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a b s t r a c t

Dispersal has important implications on an individual, population and metapopulation

level. Dispersal rates, however, are difficult to measure. In this paper we introduce a method

that uses census data, i.e. repeated counts of number of individuals per location and point in

time, to estimate dispersal rates. The rationale underlying this method is that local stochas-

tic disturbances which dissipate in subdivided populations create a covariance structure, the

details of which depend on how strongly the local populations are coupled. This covariance

structure can be used to estimate dispersal rates. We describe this process using a stochas-

tic model for growth and dispersal which explicitly accounts for the geometry of the patchy

population. A regression of the covariance structure of this model is then used to infer the

growth rate near equilibrium and the dispersal rate. We study the distribution of the esti-

mated parameters and obtain confidence intervals using a bootstrap analysis and a Monte

Carlo technique. We study how the confidence intervals depend on the model’s parameters,

the robustness of the estimating scheme, and discuss the applicability of our method.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Many natural populations are subdivided and occur in habitat
patches (Husband and Barrett, 1996; Hanski, 1999; Thrall et al.,
2000; Barton, 2001; Chesson, 2001). Ecologists and geneticists
have formulated models describing metapopulations, i.e. pop-
ulations consisting of “local populations", each of which have
a substantial probability of extinction, but which can persist
at a regional level (Wright, 1940; Levins, 1970; Hanski, 1999,
2001). Dispersal between these local populations is an essen-
tial feature of a spatially structured population.

The importance of dispersal has been recognised in em-
pirical and theoretical studies. However, quantification of dis-
persal is difficult as measuring dispersal rates in natural pop-
ulations is a time and labour consuming enterprise. (For re-
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cent reviews on this issue see Clobert et al., 2001; Nathan et
al., 2003; Cain et al., 2003 and other papers in same issue of
Ecology.) So far two different methodologies have been used to
measure dispersal: (1) one can observe marked individuals and
track movement and redistribution (Stensteth and Lidicker,
1992; Kaiser, 1995), (2) one can infer dispersal by the redistri-
bution of a population of markers (Slatkin, 1985; Barton, 2001).

Individual movement-redistribution methods use data on
observations of individuals. In most cases, animals will be cap-
tured, a mark applied, and the animal released. Subsequent
reobservation generates (a) recovery data, in which animals
are recovered dead, (b) recapture/resighting data, or (c) known-
status data, in which marked animals are re-observed alive
or dead at specified times. Evaluation of the data using an ap-
propriate model yields dispersal-related parameters (Bennets
et al., 2001). Direct tracking of individuals involves the use of
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radio tags, satellite tags or electronic data storage tags (see
references in Nathan (2001)). Although this approach poten-
tially gives good results, its main disadvantages are associated
technical difficulties, the labour-intensive way of collecting
the data, and above all the high costs of the tags. Moreover,
the data gathered using these direct methods might not
represent the full distribution of individual movements and
are temporarily and spatially restricted (Koenig et al., 1996).

In case of the redistribution of a population of markers, the
markers used are mostly genetic e.g. microsatellite loci, mito-
chondrial DNA, ribosomal DNA or allozymes. The distribution
of neutral genetic markers can be predicted from a model and
the observed distribution can be compared to the distribution
predicted by the model. The data necessary for these indirect
techniques are easy to gather: a single sampling event in time
generates a snapshot of the current state of genetic variation
which is used to calculate the number of migrants under a cer-
tain model. Coalescence methods and F-statistics are mostly
based on the island model (Wright, 1940) and are widely used
to measure gene flow within and among populations and in-
fer dispersal rates. This model is the most widely used, and is
based on a large number of assumptions, which are all too
often violated in real populations. This is the main reason
why studies using F-statistics to infer dispersal patterns have
been widely criticized (Whitlock and McCauley, 1999; Cain et
al., 2000; Barton, 2001; Rousset, 2001 and references therein).
While a stepping stone model is often more realistic, and is
also used as a basis to calculate statistics of interest in the-
oretical papers (Slatkin and Barton, 1989; Rousset, 1996), it is
rarely applied to determine dispersal rates in studies of natu-
ral populations.

A more fundamental shortcoming of such methods is that
for population ecological purposes one usually needs esti-
mates of dispersal rates at the timescale of generations, such
as the “instantaneous” dispersal rates determined by direct
measurements. The rates obtained by genetic approaches re-
flect an average over a period of time whose length depends
on mutation rates and genetic drift. This means that these in-
direct (genetic) methods of estimating dispersal rates are of
limited use for population ecologists (Hanski, 2001).

Here, we will illustrate how spatial census data, i.e. re-
peated counts of number of individuals per location and point
in time, can be used to estimate dispersal rates. The rationale
underlying this method is that natural populations are sub-
ject to local stochastic disturbance due to, for instance, demo-
graphic stochasticity or the effect of local weather. The cre-
ation and dissipation of such perturbations will create a typ-
ical covariance structure. These perturbations will dissipate
quickly through the population if the population is highly con-
nected and there is much dispersal, if there is limited dispersal
the dissipation will be slow.

Various formalisms to describe dispersal have been used
in the formulation of ecological models (see Czaran, 1998 for
a comprehensive review). Among the different approaches
are models that describe a continuum of space in the form
of partial differential equations, individuals based models,
and multi-patch or metapopulation models. The last cate-
gory forms a convenient middle ground between realism and
tractability and this explains the popularity of this approach
(for recent examples in the ecological modelling literature see

Etienne (2004), Hein et al. (2004), Hovestadt and Poethke (2006),
Matter (2001), Metzger (2005), Reed and Levine (2005), Pfenning
et al. (2004) and Singh et al. (2004).) Here, we describe a generic
model for dispersal in coupled populations using a model for
population growth and dispersal and from this description de-
rive a method to infer dispersal rates from census data. The
model describes an ecological system of coupled local popu-
lations which are reasonably close to their equilibrium. As the
equilibrium value, its stability properties and the topology of
the spatial system can be chosen freely, this approach pro-
vides a generic description of diffusive systems. The model
thus generalises the description of dispersal used previously
(see e.g. Hassell et al., 1991; Rohani et al., 1996; Czaran, 1998;
Bascompte and Sole, 1998). Our model extends earlier work in
that it explicitly accounts for a large class of topologies and
thus avoids simplifying assumptions on the geometry of the
habitat. We develop a statistical method to analyze these data
and estimate parameters from the covariance structure, this
provides a novel and generic way to estimate dispersal rates
and is an advance compared to other methods, in particular
those based on genetics, in that this provides an estimate at an
ecological relevant timescale. We study the distribution of the
estimator, and we obtain confidence intervals of the disper-
sal rate. Finally, we discuss the robustness of this estimation
scheme.

2. A generic model for dispersal

We will start this section with a brief explanation of the model
structure. For ease of explanation we will start with a strictly
deterministic model. We will next use this model as a basis for
a stochastic model. For clarity we have formulated the model
as a non-structured, single species model without density-
dependent dispersal. These model can be easily generalised,
in Appendix A we outline how this can be done.

2.1. The deterministic model

The model we will use is a simple linear model describing
the changes in population size. The model describes the pop-
ulation dynamics of a local population in the vicinity of its
equilibrium.

Let us assume that the population consists of n sub-
populations. In the absence of dispersal the linearised dynam-
ics take the form

xj,t+1 = axj,t, j = 1, . . . , n (1)

where xj,t is the deviation of the density of population j from
its equilibrium density at time t. Note that the first index refers
to location, and the second to time. The parameter a can be
interpreted as the per capita growth rate of the population near
equilibrium. This is a generic description that can cover a large
class of growth models. To see this, suppose that the local pop-
ulation grows according to some growth function F: so that
Nj,t+1 = F(Nj,t). Suppose there exists an equilibrium popula-
tion size N̄ defined as F(N̄) = N̄. The constant a is the deriva-
tive of F evaluated at the equilibrium point: a = (dF/dN)|N=N̄. If
xj,t = Nj,t − N̄ is the deviation from the equilibrium density N̄,
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