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Abstract

Multivariate regression analysis is one of the most important tools in metabolomics studies. For regression of high-dimensional data, partial least
squares (PLS) has been widely used. Canonical correlation analysis (CCA) is a classic method of multivariate analysis; it has however rarely been
applied to multivariate regression. In the present study, we applied PLS and regularized CCA (RCCA) to high-dimensional data where the number
of variables (p) exceeds the number of observations (), N < p. Using kernel CCA with linear kernel can drastically reduce the calculation time
of RCCA. We applied these methods to gas chromatography—mass spectrometry (GC-MS) data, which were analyzed to resolve the problem of
Japanese green tea ranking. To construct a quality-predictive model, the optimal number of latent variables in RCCA determined by leave-one-out
cross-validation (LOOCYV) was significantly fewer than in PLS. For metabolic fingerprinting, we successfully identified important metabolites for

green tea grade classification using PLS and RCCA.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Canonical correlation analysis; Partial least squares; Kernel method; Multivariate analysis; Metabolic fingerprinting; Metabolomics

1. Introduction

Metabolomics is a science based on exhaustive-profiling
of metabolites. It has been widely applied to animals and
plants, microorganisms, food and herbal medicine materials, and
other areas. In metabolomics, gas chromatography—mass spec-
trometry (GC-MS), liquid chromatography—mass spectrometry
(LC-MS), and capillary electrophoresis—mass spectrometry
(CE-MS) are all important technologies for the analysis of
metabolites [1]. Metabolic fingerprinting [2,3] is a technology
that considers the metabolome to be a fingerprint and is applied
to various classifications and forecasts. The procedures include
the identification of important metabolites for regression or clas-
sification by applying multivariate analysis or machine learning
to data obtained by the above-mentioned analytical methods.
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Several multivariate regression methods have been applied
in metabolomics studies [4,5]. For regression and classification
of high-dimensional data, partial least squares (PLS) [6,7] have
been widely used so far. Recently, PLS has been used in the
field of bioinformatics research to analyze gene expression data
from cDNA microarrays [8,9]. The main reason why PLS has
been widely used is its ready applicability where the number of
variables (p) exceeds the number of observations (), N < p,
and where there is multicolinearity among the variables.

Canonical correlation analysis (CCA) [10] is, like principal
component analysis (PCA), a classic method of multivariate
analysis; it is however rarely applied to high-dimensional data
for regression because it is theoretically impossible to apply
CCA to N < p type data, to which we can however apply reg-
ularized CCA (RCCA). The value of the regularized parameter
in RCCA interpolates smoothly between PLS and CCA [11].

The kernel method [12,13] has been studied mainly in
machine learning since a support vector machine was developed
and actively studied in the field of bioinformatics research [14].
Nonlinear extension of multivariate analysis using the kernel
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method, including kernel PCA [15], kernel Fisher discriminant
analysis (FDA) [16], kernel PLS [17], and kernel CCA [18,19],
has been proposed. We can perform nonlinear multivariate anal-
ysis by replacing the inner products in the feature space with the
kernel function without explicitly knowing the mapping in the
feature space.

In the present study, we applied PLS and RCCA to GC-MS
data, which were analyzed to resolve the problem of Japanese
green tea ranking. The main objective of the present study is
to apply RCCA to N <K p type data and compare RCCA with
PLS. When we apply an ordinary PLS algorithm to large-size
data such as high-dimensional data, the algorithm often requires
a large amount of memory and long computational time. An
alternative PLS algorithm to avoid these problems is therefore
proposed [20]. These problems are more serious in RCCA than
in PLS because of the need to handle a large-size matrix, p X p.
Using kernel CCA with a linear kernel allows the use of a small
size matrix, N x N.

2. Data analysis
2.1. Data

In the present study, we used data from GC-MS in which
hydrophilic primary green tea metabolites were analyzed [21].
The main purpose of the Japanese green tea ranking problem
is to construct a quality-predictive model. Data preprocessing
including peak alignment, peak identification, and conversion
to numeric variables was achieved in a way similar to that pre-
viously reported [21]. The explanatory variable X consists of
metabolite-profiling data from chromatography. The response
variable y is ranking of teas from Ist to 53rd determined by
the total scores of the sensory tests, which are leaf appearance,
smell, and color of the brew and its taste, judged by professional
tea testers. The explanatory variable X and the response variable
y are mean-centered but are not scaled. Fifty-three samples were
divided into 2 groups: 47 samples as a training set and 6 samples,
those ranked 2nd, 12th, 22nd, 32nd, 42nd, and 52nd, excluded
as a test set. Each data set contained 2064 variables in which
retention time changed every 0.01 min from 4.01 to 24.64 min.

2.2. Data analysis methods

Multiple linear regression (MLR) is an ordinary regression
analysis; it constructs a regression model between the explana-
tory variable X and the response variable y. However, MLR
cannot be applied to N < p type data. Regression methods by
using latent variables such as PLS construct a regression model
between a new explanatory variable t, which is obtained by
dimensionality reduction of X, and the response variable y. Here
we explain the dimensionality reduction method in PLS, CCA,
RCCA, kernel PLS, and kernel CCA as a generalized eigenvalue
problem, as described previously [22].

2.2.1. Partial least squares
PLS is explained as the optimization problem of maximiz-
ing the square of covariance between the score vector t, which

is a linear combination of the explanatory variable X, and the
response variable y under the constraint of w'w=1:

max [cov(Xw, y)]2

const. ww =1

where w is a weight vector. X and y are mean-centered. Finally,
PLS is formulated as the following eigenvalue problem:

%X’yy’Xw =AW ()
where A is a Lagrange multiplier.

The eigenvector corresponding to the maximum eigenvalue
is the weight vector of PLS. This eigenvalue problem is solved
by singular value decomposition (SVD). A score vector can be
calculated as t = Xw. To calculate more than one latent variable,
we perform deflation of X and y and then calculate the eigenvec-
tor corresponding to the maximum eigenvalue in Eq. (1). This
operation is iterated until the number of latent variables reaches
the required number.

2.2.2. Canonical correlation analysis

CCA is explained as the optimization problem of maximiz-
ing the square of correlation between the score vector t, which
is a linear combination of the explanatory variable X, and the
response variable y:

2
cov(Xw,y)

VWX Xw/N

This conditional equation is rewritten as follows:

max [corr(Xw, y)]* =

max [cov (Xw, y)]2

1
const. —wX'Xw =1
N

Finally, CCA is formulated as the following generalized eigen-
value problem:

1
NX/yy/Xw = AX'Xw (2

This generalized eigenvalue problem is solved by Cholesky
decomposition of X’X when X'X is full rank and SVD.

2.2.3. Regularized canonical correlation analysis

In contrast to PLS, CCA is not applicable to the case N < p
because the matrix XX is rank-deficient. A penalty on the norm
of the weight vector is introduced into CCA. This RCCA is
applicable to the case N <« p because X'X + 71 is always a full
rank matrix. I denotes the identity matrix and t the regularized
parameter.

max [cov(Xw, y)]2

1
const. (1 — ‘L')NW/X/XW +ww=1



Download English Version:

https://daneshyari.com/en/article/4380

Download Persian Version:

https://daneshyari.com/article/4380

Daneshyari.com


https://daneshyari.com/en/article/4380
https://daneshyari.com/article/4380
https://daneshyari.com

