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a b s t r a c t

We deployed five broadband three-components seismic stations in the Iles Eparses in the south-west
Indian Ocean and on Mayotte Island, between April 2011 and January 2014. These small and remote
oceanic islands suffer the effects of strong ocean swells that affect their coastal environments but most
islands are not instrumented by wave gauges to characterize the swells. However, wave action on the
coast causes high levels of ground vibrations in the solid earth, so-called microseismic noise. We use this
link between the solid earth and ocean wave activity to quantify the swells locally. Spectral analyses of
the continuous seismic data show clear peaks in the 0.05e0.10 Hz frequency band (periods between 10
and 20 s), corresponding to the ocean wave periods of the local swells. We analyze an example of austral
swell occurring in August 2013 and a cyclonic event (Felleng) that developed in January 2013, and
quantify the ground motion at each station induced by these events. In both cases, we find a linear
polarization in the horizontal plane with microseismic amplitude directly correlated to the swell height
(as predicted by the global swell model WaveWatchIII), and a direction of polarization close to the
predicted swell propagation direction. Although this analysis has not been performed in real time, it
demonstrates that terrestrial seismic stations can be efficiently used as wave gauges, and are particularly
well suited for quantifying extreme swell events. This approach may therefore provide useful and
cheaper alternatives to wave buoys for monitoring swells and the related environmental processes such
as beach erosion or coral reef damages.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The Iles Eparses in the western Indian Ocean consist of the
islands of Europa, Juan de Nova and Glorieuses in the Mozambique
Channel and by Tromelin Island located ca 400 km east of
Madagascar. Their fragile environments may suffer from anthro-
pogenic activity but have also to face the environmental impact of
combined ocean and atmosphere activity. In particular, oceanic
swell events generated by local or distant storms may hit these
islands hard, strongly affecting their reef barriers and their shore-
lines, and resulting in coral destruction and beach erosion by
sediment transport. Climate change could possibly worsen this

impact. Hence, more and longer-term observations are highly
desirable, even if they are proxy observations of swell activity
rather than actual wave-gauge data.

Here, a temporary network of five three-component broadband
seismic stations (Fig. 1), which was deployed in the Iles Eparses and
on Mayotte Island primarily for the study of deep earth structure
(Barruol and Sigloch, 2013), is re-purposed to quantify local swell
activity in terms of amplitude (swell parameter Hs), period (swell
parameter Tp), and direction of propagation (swell parameter Dp).
With the exception of Mayotte, these islands are only a few kilo-
metres in diameter, located in harsh and remote environments, and
all but Mayotte have been declared terrestrial andmarine protected
areas to preserve the natural environment and local biodiversity.

Quantifying local swells on remote islands requires direct or
indirect observations to determine wave heights, periods and di-
rections of propagation. Numerical models such as the NOAA

* Corresponding author. Laboratoire G�eoSciences R�eunion, Universit�e de La
R�eunion, 15 avenue Ren�e Cassin, CS 92003, 97744, Saint Denis cedex 9, France.

E-mail address: guilhem.barruol@univ-reunion.fr (G. Barruol).

Contents lists available at ScienceDirect

Acta Oecologica

journal homepage: www.elsevier .com/locate/actoec

http://dx.doi.org/10.1016/j.actao.2015.10.015
1146-609X/© 2015 Elsevier Masson SAS. All rights reserved.

Acta Oecologica 72 (2016) 120e128

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:guilhem.barruol@univ-reunion.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actao.2015.10.015&domain=pdf
www.sciencedirect.com/science/journal/1146609X
http://www.elsevier.com/locate/actoec
http://dx.doi.org/10.1016/j.actao.2015.10.015
http://dx.doi.org/10.1016/j.actao.2015.10.015
http://dx.doi.org/10.1016/j.actao.2015.10.015


WaveWatchIII model (hereafter called WWIII) (Tolman and
Chalikov, 1996) are available at global scale, but their spatial reso-
lution is rather poor (0.5�) and does not take into account the local
interaction of swell with small islands such as those present in the
Mozambique Channel. Direct and local swell observations are very
scarce in the Indian Ocean and absent in the Mozambique Channel,
motivating our approach to characterize swells from indirect seis-
mological observations. These novel seismological proxies for
oceanic activity may be relatively easy to acquire and can be effi-
ciently used to evaluate the local impact of waves on the coastal
environment of the islands.

After discussing the origins of various oceanic sources of
microseismic noise in Section 2, we present the seismic network,
the data, and our analyses, performed mostly on so-called “pri-
mary” microseisms (Section 3). We compare in some detail swell
characteristics recorded during an austral swell event in the
Mozambique Channel in August 2013 (Section 4) and during the
passage of cyclone Felleng over Tromelin Island in January 2013
(Section 5). By “austral swell”, we mean ocean waves arriving from
the southern part of the Indian Ocean, generated by powerful
storms and over long fetch distances, and that propagate north-
ward over long distances with little attenuation and as coherent
wave packages. “Cyclonic swell” has the same mechanism of exci-
tation and propagation, except that the generating storms are
tropical storms, called “cyclones” in the Indian Ocean, which may
develop much closer to the (tropical) Iles Eparses. Section 6 ana-
lyzes seismic signals at the Iles Eparses over longer periods of
severalmonths and demonstrates that themain swell events can be
well retrieved and quantified from seismic data.

2. Origins of microseismic noise

The present work is based on the analysis of the seismic “noise”
generated by ocean swell and transmitted to the solid earth as
seismic waves that may be recorded by terrestrial seismological
instruments (e.g., Friedrich et al., 1998). This noise is called
“microseismic” because it consists of continuous ground displace-
ment of a few micrometers, as opposed to sudden, strong earth-
quake arrivals. It is well visible on individual seismic energy spectra

that represent the distribution of noise energy as function of fre-
quency for a given time period. Fig. 2a shows the noise power
spectral density of the three seismometer components of station
EURO and for two different time periods: during a quiet period
before an austral swell event, on Aug. 18, 2013 and during this swell
event two days later, on Aug. 20, 2013. The spectra of Fig. 2a show
two clear peaks in separate frequency bands that characterize the
two kinds of seismic noise, classically split into primary and sec-
ondary microseisms (hereafter named PM and SM, respectively).
They represent different physical processes involving local or
distant sources of ocean wave activity, briefly described below.

Primary microseisms (PM in Fig. 2a), on which we focus the
present paper, are generally visible at coastal and island stations
and accepted to be generated through direct interaction of swell-
induced pressure variation on the sloping seafloor close to the
shore (Hasselmann, 1963; Cessaro, 1994; Barruol et al., 2006). Such
primary microseismic noise sources have the same periods as the
ocean swell (between 8 and 20 s) and are accepted to be generated
by the local interaction of swell with the sea floor in coastal areas,
where water depths becomes shallower than about half the swell
wavelength (Darbyshire and Okeke, 1969). Analyzing microseismic
noise in this PM frequency band is therefore a way to characterize
the local impact of swell on the shore. Comparing noise spectra in
Fig. 2a before and after the arrival of a strong swell event, evidences
a strong increase of the noise peak in the PM frequency band (at
periods close to 20 s) on all three components of station EURO. The
seismic spectra obtained during a quiet period two days before the
swell arrival (light colours in Fig. 2a) have much lower amplitudes
in both the SM and PM bands. The spectrogram covering this time
period (Fig. 2b) clearly shows the development of the PM associ-
atedwith this swell arrival. It also shows the swell dispersion effect,
with long period swell travelling faster across the oceans than short
period swell, explaining the slope observed in the arrival of the PM
energy over time.

Secondary microseisms (SM in Fig. 2a) dominate seismic noise
worldwide at both continental and oceanic stations. This noise
exhibits a large peak at half the period of ocean waves (typically
between 3 and 10 s) and is widely accepted to be excited by a
depth-independent, second-order pressure fluctuation generated
by interference of swells (water waves) of similar periods travelling
in opposite directions (Longuet-Higgins, 1950). This nonlinear
process generates stationary ocean waves whose pressure fluctu-
ations on the seafloor excite seismic surface waves, specifically
Rayleigh waves. These are polarized in the vertical plane with an
elliptical retrograde particle motion and can propagate over large
distances in the solid earth, with little attenuation. Secondary mi-
croseisms can be generated in the deep oceans and at large dis-
tances from coastal areas (e.g., Essen et al., 2003; Ardhuin et al.,
2011; Obrebski et al., 2012; Davy et al., 2014). For the Indian
Ocean, the dominant sources have been located in the southern-
most part of the basin, associated with large atmospheric low-
pressure systems moving around Antarctica (Reading et al., 2014;
Davy et al., 2015) but they can also be generated by major trop-
ical storms (Davy et al., 2014).

Although secondary microseisms may provide information
concerning distant storms, stationary oceanwaves and SM can also
be generated by coastal reflection of waves (e.g., Bromirski and
Duennebier, 2002; Beucler et al., 2014). If incident and reflected
waves propagate in opposite directions, the incoming swell may
interfere with its reflected swell, resulting in the generation of
standing waves in coastal areas, oscillating at twice the frequency
of the propagating wave (Bromirski et al., 2005). Some observations
suggest that local and distant sources of noise in the SM frequency
peak may coexist (e.g., Chevrot et al., 2007; Koper and Buriaciu,
2015). In the present study, it may be the case for station EURO

Fig. 1. Location of the seismic stations deployed in the Iles Eparses around Madagascar.
Inserts show satellite images of Europa and Juan de Nova Islands, and the locations of
the seismic stations.
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