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In this paper we determine the limit cycle structures of synchronous and sequential 
finite dynamical systems governed by dynamic bi-threshold functions over non-uniform 
networks. So far, work in this area has been concerned with static threshold values, and 
our results generalize these. In particular, this includes the celebrated result by Goles and 
Olivos on synchronous neural networks (1981) [5], the work by Kuhlman et al. (2012) [12]
on static bi-threshold systems, and the work by Chang et al. (2014) [2] on dynamic 
standard threshold systems.
In our work, the state of each vertex v includes the usual binary state xv ∈ {0, 1}, the 
dynamic up-thresholds k↑

v and down-thresholds k↓
v whose values change only upon a 

transition of xv . We show that the projection of the periodic orbits onto the Boolean 
x-dynamics have maximal size 2 under the synchronous update method regardless of how 
the up- and down-thresholds evolve. The proof is a careful extension of the technique 
originally developed in the proof by Goles and Olivos (1981) [5] and which was later 
modified by Kuhlman et al. (2012) [12] to cover bi-threshold systems. We also derive 
sufficient conditions on the evolution of the up- and down-thresholds that ensures that 
the sequential systems only have fixed points as limit sets. The results should be relevant 
for modeling and analyzing a large range of social and biological systems where agent 
adaptation occurs and needs to be accounted for.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A large range of complex phenomena such as biological, social and technical systems, can be described as discrete, 
dynamical processes taking place over networks, see for example [10,11,3,7]. Many dynamical system models have been 
proposed to capture such systems. Examples include cellular automata (CA) which were originally introduced by von Neu-
mann [18], Boolean networks (BN) proposed by Kauffman in [10,11], Random Boolean Networks (RBN), see [15,14], automata 
networks [4], and polynomial dynamical systems (PDS), see [8,9]. Our focus here is on dynamics evolving as

x(t + 1) = F
(
x(t)

)
where F : M −→ M (1)

is a map on a suitable space M . In the case of Boolean networks and this paper we take M = {0, 1}n unless stated otherwise. 
States are denoted by x = (x1, . . . , xn) ∈ {0, 1}n . The focus in this paper is on systems of the form (1) that are constructed 
from three components. The first is a finite graph X where each vertex v has a state xv from a set K . For each vertex v
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there is a vertex function f v that is used to map xv (t) to xv(t + 1) based on the vertex states in the 1-neighborhood of v
(including xv ) and thus governs the local dynamics. Third, an update method governs how the vertex functions assemble to 
a map F of the form (1) which produces the global dynamics. The results in this paper cover the parallel and the sequential 
update methods. From the point of view of modeling, the vertex state captures the status of a particular agent such as the 
health state in an epidemic model. The vertex function encodes the evolution of the agent’s state as a function of its own 
state and those of its neighbors in the graph X . The update scheme governs how the collection of agent states is updated 
collectively in a time step.

This paper considers vertex functions that are a generalization of bi-threshold functions. The Boolean bi-threshold function 
θv,k↑,k↓ : {0, 1}N −→ {0, 1} generalizes the standard threshold functions and is defined by

θv,k↑,k↓(x1, . . . , xN) =
⎧⎨
⎩

1, if xv = 0 and
∑N

j=1 x j � k↑

0, if xv = 1 and
∑N

j=1 x j < k↓
xv , otherwise,

(2)

where the integers k↑ and k↓ are called the up- and down-thresholds, respectively. Here v is a designated vertex and N =
d(v) + 1 where d(v) is the degree of v in X . We will consider non-uniform systems: the up- and down-thresholds will 
depend on the vertex, and we write (k↑

v )v and (k↓
v )v for the vertex-indexed sequences of up- and down-thresholds. We get 

the standard, static threshold systems when the up- and down-thresholds are the same.
For many applications, the up- and down-thresholds are not static, but are instead governed by the dynamics itself. In 

the case of epidemics such as malaria [16], for example, the acquired partial immunity will generally increase upon exposure 
to the parasite. From the point of view of modeling, this can be captured through an increase in the threshold k↑ upon the 
transition from susceptible (S or 0) to infected (I or 1). The same holds for influenza [3]. Similarly, thresholds related to 
addictive behavior such as smoking and re-smoking may change with the number of episodes that has taken place (see [17]
and references therein). In the case of acquired partial immunity for malaria there is also a drop upon periods with no 
exposure. In this paper, we investigate the dynamics of several extended threshold models that can be used to capture such 
phenomena.
Contribution. In this paper we extend the results of [2,12,5] to bi-threshold graph dynamical systems where the thresholds 
k↑ and k↓ can evolve. In the first main result (Theorem 4), we extend the result of Goles and Olivos [5] for synchronous 
neural networks, see Section 4. The extension involves a careful refinement of the partition C developed in [5] and elab-
orated further in [12]. Perhaps somewhat surprisingly, the maximal length of a periodic orbit for such systems is 2. The 
second main result (Theorem 10) is for the sequential update mechanism and gives conditions on the dynamics of the up-
and down-threshold that ensure the only limit sets are fixed points. The proof, which employs a potential function, also 
allows us to construct a bound for the maximal transient length.
Paper organization. In the next section, we give necessary background definitions and terminology. This is followed by 
some preliminary observations in Section 3. Section 4 characterizes the limit set structure of synchronous, neural networks 
with dynamic bi-threshold functions while Section 5 considers the transient structure of sequential systems and conditions 
for when they only have fixed points as attractors. We conclude with a summary in Section 6.

2. Preliminaries

Let X be a simple graph with vertex set v[X] = {1, 2, 3, . . . , n}. To each vertex v we assign a state xv from a finite 
set Mv , and refer to this as the vertex state. The system state is an n-tuple x = (x1, x2, . . . , xn) ∈ M := ∏

v Mv . Let n[v] denote 
the sorted sequence of vertices from the 1-neighborhood of v in X , and let x[v] ∈ ∏

v ′∈n[v] Mv ′ denote the corresponding 
restriction of the system state x = (x1, x2, . . . , xn) to n[v]. We denote the degree of v by d(v). Each vertex is assigned a 
vertex function

f v :
∏

v ′∈n[v]
Mv ′ −→ Mv ,

and an X-local function F v : M −→ M which is defined by

F v(x) = (
x1, x2, . . . , f v

(
x[v]), . . . , xn

)
.

We use S X to denote the set of permutations over the vertex set of X and write π = (π1, π2, . . . , πn) for the elements 
of S X . We can now define sequential and synchronous dynamical systems which are both special cases of graph dynamical 
system (GDS).

Definition 1. Let X , ( f v)v and π be as above. The associated sequential dynamical system (SDS) map Fπ : M −→ M is the 
composition

Fπ = Fπn ◦ · · · ◦ Fπ1 .
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