
Theoretical Computer Science 554 (2014) 82–94

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

How to catch L2-heavy-hitters on sliding windows

Vladimir Braverman a, Ran Gelles b,∗, Rafail Ostrovsky b,c

a Department of Computer Science, Johns Hopkins University, United States
b Department of Computer Science, University of California, Los Angeles, United States
c Department of Mathematics, University of California, Los Angeles, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 September 2013
Received in revised form 13 March 2014
Accepted 4 June 2014
Available online 10 June 2014

Keywords:
Data streams
Approximation algorithms
Heavy hitters
Sliding window model

Finding heavy-elements (heavy-hitters) in streaming data is one of the central, and 
well-understood tasks. Despite the importance of this problem, when considering the 
sliding windows model of streaming (where elements eventually expire) the problem of 
finding L2-heavy elements has remained completely open despite multiple papers and 
considerable success in finding L1-heavy elements.
Since the L2-heavy element problem doesn’t satisfy certain conditions, existing methods 
for sliding windows algorithms, such as smooth histograms or exponential histograms are 
not directly applicable to it. In this paper, we develop the first polylogarithmic-memory 
algorithm for finding L2-heavy elements in the sliding window model.
Our technique allows us not only to find L2-heavy elements, but also heavy elements with 
respect to any Lp with 0 < p ≤ 2 on sliding windows. By this we completely “close the 
gap” and resolve the question of finding Lp-heavy elements in the sliding window model 
with polylogarithmic memory, since it is well known that for p > 2 this task is impossible.
We demonstrate a broader applicability of our method on two additional examples: we 
show how to obtain a sliding window approximation of the similarity of two streams, 
and of the fraction of elements that appear exactly a specified number of times within 
the window (the α-rarity problem). In these two illustrative examples of our method, we 
replace the current expected memory bounds with worst case bounds.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A data stream S is an ordered multiset of elements {a0, a1, a2, . . .} where each element at ∈ {1, . . . , u} arrives at time t . 
In the sliding window model we consider at each time t ≥ N the last N elements of the stream, i.e. the window W =
{at−(N−1), . . . , at}. These elements are called active, whereas elements that arrived prior to the current window {ai | 0 ≤ i <
t − (N − 1)} are expired. For t < N , the window consists of all the elements received so far, {a0, . . . , at}.

Usually, both u and N are considered to be extremely large so it is not applicable to save the entire stream (or even one 
entire window) in memory. The problem is to be able to calculate various characteristics about the window’s elements using 
small amount of memory (usually, polylogarithmic in N and u). We refer the reader to the books of Muthukrishnan [1] and 
Aggarwal (ed.) [2] for extensive surveys on data stream models and algorithms.

One of the main open problems in data streams deals with the relations between the different streaming models [3], 
specifically between the unbounded stream model and the sliding window model. In this paper we provide another 

* Corresponding author.
E-mail addresses: vova@cs.jhu.edu (V. Braverman), gelles@cs.ucla.edu (R. Gelles), rafail@cs.ucla.edu (R. Ostrovsky).

http://dx.doi.org/10.1016/j.tcs.2014.06.008
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.06.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:vova@cs.jhu.edu
mailto:gelles@cs.ucla.edu
mailto:rafail@cs.ucla.edu
http://dx.doi.org/10.1016/j.tcs.2014.06.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.06.008&domain=pdf


V. Braverman et al. / Theoretical Computer Science 554 (2014) 82–94 83

important step in clarifying the connection between these two models by showing that finding L p-heavy hitters is just 
as doable on sliding windows as on the entire stream.

We focus on approximation-algorithms for certain statistical characteristics of the data streams, specifically, finding fre-
quent elements. The problem of finding frequent elements in a stream is useful for many applications, such as network 
monitoring [4] and DoS prevention [5–7], and was extensively explored over the last decade (see [1,8] for a definition of 
the problem and a survey of existing solutions, as well as [9–17]).

We say that an element is heavy if it appears more times than a constant fraction of some L p norm of the stream. 
Recall that for p > 0, the Lp norm of the frequency vector1 is defined by Lp = (

∑
i np

i )1/p , where ni is the frequency of 
element i ∈ [u], i.e., the number of times i appears in the window. Since different L p can be considered, we obtain several 
different ways to define a “heavy” element. Generally speaking (as mentioned in [19]), when considering frequent elements 
(heavy-hitters) with respect to Lp , the higher p is, the better. Specifically, identifying frequent elements with respect to L2 is 
better than L1 since an L1 algorithm can always be replaced with an L2 algorithm, with less or equal memory consumption 
(but not vice versa).

Naturally, finding frequent elements with respect to the L2 norm is a more difficult task (memory-wise) than the equiv-
alent L1 problem. To demonstrate this fact let us regard the following example: let S be a stream of size N , in which the 
element a1 appears 

√
N times, while the rest of the elements a2, . . . , aN−√

N appear exactly once in S . Say we wish to 
identify a1 as a heavy element. Note that n1 = 1√

N
L1 while n1 = cL2, where c is a constant, lower bounded by 1√

2
. There-

fore, as N grows, n1/L1 → 0 goes to zero, while n1/L2 is bounded by a constant. If an algorithm finds elements which are 
heavier than γ Lp with memory poly(γ −1, log N, log u), then for p = 2 we get a polylogarithmic memory, while for p = 1
the memory consumption is super-logarithmic.

We focus on solving the following L2-heaviness problem:

Definition 1 ((γ , ε)-approximation of L2-frequent elements). For 0 < ε, γ < 1, output any element i ∈ [u] such that ni > γ L2
and no element such that ni < (1 − ε)γ L2.

The L2 norm is the most powerful norm for which we can expect a polylogarithmic solution, for the frequent-elements 
problem. This is due to the known lower bound of Ω(u1−2/p) for calculating Lp over a stream [20,21].

There has been a lot of progress on the question of finding L1-frequent elements, in the sliding window model [14,16,17], 
however those algorithms cannot be used to find L2-frequent elements with an efficient memory. In 2002, Charikar, Chen 
and Farach-Colton [9] developed the CountSketch algorithm that can approximate the “top k” frequent-elements on an 
unbounded stream, where k is given as an input. Formally, their algorithm outputs only elements with frequency larger 
than (1 − ε)φk , where φk is the frequency of the kth most frequent element in the stream, using memory proportional to 
L2

2/(εφk)
2. Since the “heaviness” in this case is relative to φk , and the memory is bounded by the fraction L2

2/(εφk)
2, Charikar 

et al.’s algorithm finds in fact heaviness in terms of the L2 norm. A natural question is whether one can develop an algo-
rithm for finding frequent-elements that appear at least γ L2 times in the sliding window model, using poly(γ −1, log N, log u)

memory.

Our results. We give the first polylogarithmic algorithm for finding an ε-approximation of the L2-frequent elements in the 
sliding window model. Our algorithm is able to identify elements that appear within the window a number of times which 
is at least a γ -fraction of the L2 norm of the window, up to a multiplicative factor of (1 − ε). In addition, the algorithm 
guarantees to output all the elements with frequency at least (1 + ε)γ L2.

Theorem 1. There exists an efficient sliding window algorithm that outputs a (γ , ε)-approximation of the L2-frequent-elements, with 
probability at least 1 − δ and memory poly(ε−1, γ −1, log N, log δ−1).

We note that the CountSketch algorithm works in the unbounded model and does not apply directly on sliding windows. 
Moreover, CountSketch solves a slightly different (yet related) problem, namely, the top-k problem, rather than the L2
heaviness. To achieve our result on L2 heavy hitters, we combine in a non-trivial way the scheme of Charikar et al. with 
a sliding-window approximation for L2 as given by Braverman and Ostrovsky [22]. Variants of these techniques sufficient 
to derive similar results were known since 2002,2 however no algorithm for L2 heavy hitters was reported despite several 
papers on L1 heavy hitters.

Our solution gives another step in the direction of making a connection between the unbounded and sliding window 
models, as it provides an answer for the very important question of heavy hitters in the sliding window model. The result 
joins the various solutions of finding L1-heavy hitters in sliding windows [11,14,24,7,16,17,25], and can be used in various 
algorithms that require identifying L2 heavy hitters, such as [26,27] and others. More generally, our paper resolves the 

1 Throughout the paper we use the term “Lp norm” to indicate the Lp norm of the frequency vector, i.e., the p-th root of the p-th frequency moment 
F p = ∑

i np
i [18], rather than the norm of the data itself.

2 Indeed, we use the algorithm of Charikar et al. [9] that is known since 2002. Also, it is possible to replace (with some non-trivial effort) our smooth 
histogram method for L2 computation with the algorithm of Datar, Gionis, Indyk and Motwani [23] for L2 approximation.



Download English Version:

https://daneshyari.com/en/article/438166

Download Persian Version:

https://daneshyari.com/article/438166

Daneshyari.com

https://daneshyari.com/en/article/438166
https://daneshyari.com/article/438166
https://daneshyari.com

