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Keywords:

Pathwidth the constant factor approximation algorithm for this problem obtained by Biedl [1] for
Outerplanar graph 2-vertex-connected outerplanar graphs will work for all outer planar graphs.
2-Vertex-connected © 2014 Elsevier B.V. All rights reserved.

1. Introduction

A graph G(V, E) is outerplanar, if it has a planar embedding with all its vertices lying on the outer face. Computing
planar straight line drawings of planar graphs, with their vertices placed on a two-dimensional grid, is a well known
problem in graph drawing. The height of a grid is defined as the smaller of the two dimensions of the grid. If G has a
planar straight line drawing, with its vertices placed on a two-dimensional grid of height h, then we call it a planar drawing
of G of height h. It is known that any planar graph on n vertices can be drawn on an (n — 1) x (n — 1) sized grid [2]. A well
studied optimization problem in this context is to minimize the height of the planar drawing.

Pathwidth is a structural parameter of graphs, which is widely used in graph drawing and layout problems [1,3,4]. We
use pw(G) to denote the pathwidth of a graph G. The study of pathwidth, in the context of graph drawings, was initiated
by Dujmovic et al. [3]. It is known that any planar graph that has a planar drawing of height h has pathwidth at most h [4].
However, there exist planar graphs of constant pathwidth but requiring §2(n) height in any planar drawing [5]. In the
special case of trees, Suderman [4] showed that any tree T has a planar drawing of height at most 3 pw(T) — 1. Biedl [1]
considered the same problem for the bigger class of outerplanar graphs. For any 2-vertex-connected outerplanar graph G,
Biedl [1] obtained an algorithm to compute a planar drawing of G of height at most 4 pw(G) — 3. Since it is known that
pathwidth is a lower bound for the height of the drawing [4], the algorithm given by Biedl [1] is a 4-factor approximation
algorithm for the problem, for any 2-vertex-connected outerplanar graph. The method in Biedl [1] is to add edges to the
2-vertex-connected outerplanar graph G to make it a maximal outerplanar graph H and then draw H on a grid of height
4pw(G) — 3. The same method would give a constant factor approximation algorithm for arbitrary outerplanar graphs, if it
were possible to add edges to an arbitrary connected outerplanar graph G to obtain a 2-vertex-connected outerplanar graph
G’ such that pw(G’) = O (pw(G)). This was an open problem in Biedl [1].
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In this paper, we settle this problem by giving an algorithm to augment a connected outerplanar graph G of pathwidth
p by adding edges so that the resultant graph is a 2-vertex-connected outerplanar graph of pathwidth O(p). Notice that,
the non-triviality lies in the fact that G’ has to be maintained outerplanar. (If we relax this condition, the problem becomes
very easy. It is easy to verify that the supergraph G’ of G, obtained by making two arbitrarily chosen vertices of G adjacent
to each other and to every other vertex in the graph, is 2-vertex-connected and has pathwidth at most pw(G) + 2.) Similar
problems of augmenting outerplanar graphs to make them 2-vertex-connected, while maintaining the outerplanarity and
optimizing some other properties, like number of edges added [6,7], have also been investigated previously.

2. Background

A tree decomposition of a graph G(V,E) [8] is a pair (T, Z"), where T is a tree and 2" = (X; :t € V(T)) is a family of
subsets of V (G), such that:

1. UXe:teV(T)) =V (G).
2. For every edge e of G there exists t € V(T) such that e has both its end points in X;.
3. For every vertex v € V, the induced subgraph of T on the vertex set {t € V(T) : v € X;} is connected.

The width of the tree decomposition is max:cv (r) (|X¢| — 1). Each X; € 2 is referred to as a bag in the tree decomposition.
A graph G has treewidth w if w is the minimum integer such that G has a tree decomposition of width w.

A path decomposition (P, 2") of a graph G is a tree decomposition of G with the additional property that the tree P is a
path. The width of the path decomposition is max¢cv (py (|X¢| — 1). A graph G has pathwidth w if w is the minimum integer
such that G has a path decomposition of width w.

Without loss of generality we can assume that, in any path decomposition (P, Z") of G, the vertices of the path P are
labeled as 1,2,..., in the order in which they appear in P. Accordingly, the bags in 2" also get indexed as 1,2, .... For
each vertex v € V(G), define Firstindex o~ (v) = min{i | X; € 2" contains v}, Lastindex 9~ (v) = max{i | X;j € 2" contains v} and
Range 4~ (v) = [Firstindex g (v), Lastindex 9~ (v)]. By the definition of a path decomposition, if t € Range o~ (v), then v € X;. If
vy and vy are two distinct vertices, define Gap o~ (v1, v2) as follows:

e If Range - (v1) N Range o (v2) # ¥, then Gap 9~ (v1, v2) = 0.
o If LastIndex 9~ (v1) < Firstindex o~ (v2), then Gap 9~ (v1, v2) = [Lastindex g~ (v1) + 1, Firstindex g~ (v3)].
o If Lastindex g~ (v2) < Firstindex - (v1), then Gap o~ (v1, v2) = [Lastindex g~ (v3) + 1, Firstindex g~ (v1)].

The motivation for this definition is the following. Suppose (P, Z") is a path decomposition of a graph G and v; and
vy are two non-adjacent vertices of G. If we add a new edge between vq{ and v,, a natural way to modify the path
decomposition to reflect this edge addition is the following. If Gap o~ (v1, v2) = @, there is already an X; € 2", which contains
v1 and v; together and hence, we need not modify the path decomposition. If Lastindex o~ (v1) < Firstindex - (v;), we insert
vy into all X; € 27, such that t € Gap 9-(v1, v2). On the other hand, if Lastindex o (v) < Firstindex - (v1), we insert v;
to all X; € 2, such that t € Gap 9-(v1, v2). It is clear from the definition of Gap 4 (v1,v2) that this procedure gives a
path decomposition of the new graph. Whenever we add an edge (v1, v3), we stick to this procedure to update the path
decomposition.

A block of a connected graph G is a maximal connected subgraph of G without a cut vertex. Every block of a connected
graph G is thus either a single edge which is a bridge in G, or a maximal 2-vertex-connected subgraph of G. If a block of G
is not a single edge, we call it a non-trivial block of G. Given a connected outerplanar graph G, we define a rooted tree T
(hereafter referred to as the rooted block tree of G) as follows. The vertices of T are the blocks of G and the root of T is
an arbitrary block of G which contains at least one non-cut vertex (it is easy to see that such a block always exists). Two
vertices B; and B; of T are adjacent if the blocks B; and Bj share a cut vertex in G. It is easy to see that T, as defined
above, is a tree. In our discussions, we restrict ourselves to a fixed rooted block tree of G and all the definitions hereafter
will be with respect to this chosen tree. If block B; is a child block of block B; in the rooted block tree of G, and they share
a cut vertex x, we say that B; is a child block of B; at x.

It is known that every 2-vertex-connected outerplanar graph has a unique Hamiltonian cycle [9]. Though the Hamiltonian
cycle of a 2-vertex-connected block of G can be traversed either clockwise or anticlockwise, let us fix one of these orderings,
so that the successor and predecessor of each vertex in the Hamiltonian cycle in a block is fixed. We call this order the
clockwise order. Consider a non-root block B; of G such that B; is a child block of its parent, at the cut vertex x. If B; is a
non-trivial block and y; and y} respectively are the predecessor and successor of x in the Hamiltonian cycle of B;, then we
call y; the last vertex of B; and y; the first vertex of B;. If B; is a trivial block, the sole neighbor of x in B; is regarded as
both the first vertex and the last vertex of B;. By the term path, we always mean a simple path, i.e., a path in which no
vertex repeats.
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