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Given a connected outerplanar graph G of pathwidth p, we give an algorithm to add
edges to G to get a supergraph of G , which is 2-vertex-connected, outerplanar and of
pathwidth O (p). This settles an open problem raised by Biedl [1], in the context of
computing minimum height planar straight line drawings of outerplanar graphs, with their
vertices placed on a two-dimensional grid. In conjunction with the result of this paper,
the constant factor approximation algorithm for this problem obtained by Biedl [1] for
2-vertex-connected outerplanar graphs will work for all outer planar graphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A graph G(V , E) is outerplanar, if it has a planar embedding with all its vertices lying on the outer face. Computing
planar straight line drawings of planar graphs, with their vertices placed on a two-dimensional grid, is a well known
problem in graph drawing. The height of a grid is defined as the smaller of the two dimensions of the grid. If G has a
planar straight line drawing, with its vertices placed on a two-dimensional grid of height h, then we call it a planar drawing
of G of height h. It is known that any planar graph on n vertices can be drawn on an (n − 1) × (n − 1) sized grid [2]. A well
studied optimization problem in this context is to minimize the height of the planar drawing.

Pathwidth is a structural parameter of graphs, which is widely used in graph drawing and layout problems [1,3,4]. We
use pw(G) to denote the pathwidth of a graph G . The study of pathwidth, in the context of graph drawings, was initiated
by Dujmovic et al. [3]. It is known that any planar graph that has a planar drawing of height h has pathwidth at most h [4].
However, there exist planar graphs of constant pathwidth but requiring Ω(n) height in any planar drawing [5]. In the
special case of trees, Suderman [4] showed that any tree T has a planar drawing of height at most 3 pw(T ) − 1. Biedl [1]
considered the same problem for the bigger class of outerplanar graphs. For any 2-vertex-connected outerplanar graph G ,
Biedl [1] obtained an algorithm to compute a planar drawing of G of height at most 4 pw(G) − 3. Since it is known that
pathwidth is a lower bound for the height of the drawing [4], the algorithm given by Biedl [1] is a 4-factor approximation
algorithm for the problem, for any 2-vertex-connected outerplanar graph. The method in Biedl [1] is to add edges to the
2-vertex-connected outerplanar graph G to make it a maximal outerplanar graph H and then draw H on a grid of height
4 pw(G) − 3. The same method would give a constant factor approximation algorithm for arbitrary outerplanar graphs, if it
were possible to add edges to an arbitrary connected outerplanar graph G to obtain a 2-vertex-connected outerplanar graph
G ′ such that pw(G ′) = O (pw(G)). This was an open problem in Biedl [1].

* Corresponding author.
E-mail addresses: jasine@csa.iisc.ernet.in (J. Babu), iammanu@gmail.com (M. Basavaraju), sunil@csa.iisc.ernet.in (L.S. Chandran), deepakr@csa.iisc.ernet.in

(D. Rajendraprasad).

http://dx.doi.org/10.1016/j.tcs.2014.04.032
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.04.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:jasine@csa.iisc.ernet.in
mailto:iammanu@gmail.com
mailto:sunil@csa.iisc.ernet.in
mailto:deepakr@csa.iisc.ernet.in
http://dx.doi.org/10.1016/j.tcs.2014.04.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.04.032&domain=pdf


120 J. Babu et al. / Theoretical Computer Science 554 (2014) 119–134

In this paper, we settle this problem by giving an algorithm to augment a connected outerplanar graph G of pathwidth
p by adding edges so that the resultant graph is a 2-vertex-connected outerplanar graph of pathwidth O (p). Notice that,
the non-triviality lies in the fact that G ′ has to be maintained outerplanar. (If we relax this condition, the problem becomes
very easy. It is easy to verify that the supergraph G ′ of G , obtained by making two arbitrarily chosen vertices of G adjacent
to each other and to every other vertex in the graph, is 2-vertex-connected and has pathwidth at most pw(G) + 2.) Similar
problems of augmenting outerplanar graphs to make them 2-vertex-connected, while maintaining the outerplanarity and
optimizing some other properties, like number of edges added [6,7], have also been investigated previously.

2. Background

A tree decomposition of a graph G(V , E) [8] is a pair (T ,X ), where T is a tree and X = (Xt : t ∈ V (T )) is a family of
subsets of V (G), such that:

1.
⋃

(Xt : t ∈ V (T )) = V (G).
2. For every edge e of G there exists t ∈ V (T ) such that e has both its end points in Xt .
3. For every vertex v ∈ V , the induced subgraph of T on the vertex set {t ∈ V (T ) : v ∈ Xt} is connected.

The width of the tree decomposition is maxt∈V (T ) (|Xt | − 1). Each Xt ∈ X is referred to as a bag in the tree decomposition.
A graph G has treewidth w if w is the minimum integer such that G has a tree decomposition of width w .

A path decomposition (P ,X ) of a graph G is a tree decomposition of G with the additional property that the tree P is a
path. The width of the path decomposition is maxt∈V (P ) (|Xt | − 1). A graph G has pathwidth w if w is the minimum integer
such that G has a path decomposition of width w .

Without loss of generality we can assume that, in any path decomposition (P ,X ) of G , the vertices of the path P are
labeled as 1,2, . . . , in the order in which they appear in P . Accordingly, the bags in X also get indexed as 1,2, . . . . For
each vertex v ∈ V (G), define FirstIndexX (v) = min{i | Xi ∈ X contains v}, LastIndexX (v) = max{i | Xi ∈ X contains v} and
RangeX (v) = [FirstIndexX (v), LastIndexX (v)]. By the definition of a path decomposition, if t ∈ RangeX (v), then v ∈ Xt . If
v1 and v2 are two distinct vertices, define GapX (v1, v2) as follows:

• If RangeX (v1) ∩ RangeX (v2) �= ∅, then GapX (v1, v2) = ∅.
• If LastIndexX (v1) < FirstIndexX (v2), then GapX (v1, v2) = [LastIndexX (v1) + 1, FirstIndexX (v2)].
• If LastIndexX (v2) < FirstIndexX (v1), then GapX (v1, v2) = [LastIndexX (v2) + 1, FirstIndexX (v1)].

The motivation for this definition is the following. Suppose (P ,X ) is a path decomposition of a graph G and v1 and
v2 are two non-adjacent vertices of G . If we add a new edge between v1 and v2, a natural way to modify the path
decomposition to reflect this edge addition is the following. If GapX (v1, v2) = ∅, there is already an Xt ∈ X , which contains
v1 and v2 together and hence, we need not modify the path decomposition. If LastIndexX (v1) < FirstIndexX (v2), we insert
v1 into all Xt ∈ X , such that t ∈ GapX (v1, v2). On the other hand, if LastIndexX (v2) < FirstIndexX (v1), we insert v2

to all Xt ∈ X , such that t ∈ GapX (v1, v2). It is clear from the definition of GapX (v1, v2) that this procedure gives a
path decomposition of the new graph. Whenever we add an edge (v1, v2), we stick to this procedure to update the path
decomposition.

A block of a connected graph G is a maximal connected subgraph of G without a cut vertex. Every block of a connected
graph G is thus either a single edge which is a bridge in G , or a maximal 2-vertex-connected subgraph of G . If a block of G
is not a single edge, we call it a non-trivial block of G . Given a connected outerplanar graph G , we define a rooted tree T
(hereafter referred to as the rooted block tree of G) as follows. The vertices of T are the blocks of G and the root of T is
an arbitrary block of G which contains at least one non-cut vertex (it is easy to see that such a block always exists). Two
vertices Bi and B j of T are adjacent if the blocks Bi and B j share a cut vertex in G . It is easy to see that T , as defined
above, is a tree. In our discussions, we restrict ourselves to a fixed rooted block tree of G and all the definitions hereafter
will be with respect to this chosen tree. If block Bi is a child block of block B j in the rooted block tree of G , and they share
a cut vertex x, we say that Bi is a child block of B j at x.

It is known that every 2-vertex-connected outerplanar graph has a unique Hamiltonian cycle [9]. Though the Hamiltonian
cycle of a 2-vertex-connected block of G can be traversed either clockwise or anticlockwise, let us fix one of these orderings,
so that the successor and predecessor of each vertex in the Hamiltonian cycle in a block is fixed. We call this order the
clockwise order. Consider a non-root block Bi of G such that Bi is a child block of its parent, at the cut vertex x. If Bi is a
non-trivial block and yi and y′

i respectively are the predecessor and successor of x in the Hamiltonian cycle of Bi , then we
call yi the last vertex of Bi and y′

i the first vertex of Bi . If Bi is a trivial block, the sole neighbor of x in Bi is regarded as
both the first vertex and the last vertex of Bi . By the term path, we always mean a simple path, i.e., a path in which no
vertex repeats.
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