
Theoretical Computer Science 554 (2014) 275–282

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Approximating the minimum independent dominating set in
perturbed graphs

Weitian Tong, Randy Goebel, Guohui Lin ∗

Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada

a r t i c l e i n f o a b s t r a c t

Available online 14 November 2013

Keywords:
Independent set
Independent dominating set
Dominating set
Approximation algorithm
Perturbed graph
Smooth analysis

We investigate the minimum independent dominating set in perturbed graphs g(G, p)

of input graph G = (V , E), obtained by negating the existence of edges independently
with a probability p > 0. The minimum independent dominating set (MIDS) problem
does not admit a polynomial running time approximation algorithm with worst-case
performance ratio of n1−ε for any ε > 0. We prove that the size of the minimum
independent dominating set in g(G, p), denoted as i(g(G, p)), is asymptotically almost

surely in Θ(log |V |). Furthermore, we show that the probability of i(g(G, p)) �
√

4|V |
p is no

more than 2−|V |, and present a simple greedy algorithm of proven worst-case performance

ratio
√

4|V |
p and with polynomial expected running time.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

An independent set in a graph G = (V , E) is a subset of vertices that are pairwise non-adjacent to each other. The inde-
pendence number of G , denoted by α(G), is the size of a maximum independent set in G . One close notion to independent
set is the dominating set, which refers to a subset of vertices such that every vertex of the graph is either in the subset or
is adjacent to some vertex in the subset. In fact, an independent set becomes a dominating set if and only if it is maximal.
The size of a minimum independent dominating set of G is denoted by i(G), while the domination number of G , or the size
of a minimum dominating set of G , is denoted by γ (G). It follows that γ (G) � i(G) � α(G).

Another related notion is the (vertex) coloring of G , in which two adjacent vertices must be colored differently. Note that
any subset of vertices colored the same in a coloring of G is necessarily an independent set. The chromatic number χ(G)

of G is the minimum number of colors in a coloring of G . Clearly, α(G) · χ(G) � |V |.
The independence number α(G) and the domination number γ (G) (and the chromatic number χ(G)) have received

numerous studies due to their central roles in graph theory and theoretical computer science. Their exact values are NP-hard
to compute [4], and hard to approximate. Raz and Safra showed that the domination number cannot be approximated within
(1 − ε) log |V | for any fixed ε > 0, unless NP ⊂ DTIME(|V |log log |V |) [9,3]; Zuckerman showed that neither the independence
number nor the chromatic number can be approximated within |V |1−ε for any fixed ε > 0, unless P = NP [14]; for i(G),
Halldórsson proved that it is also hard to approximate within |V |1−ε for any fixed ε > 0, unless NP ⊂ DTIME(2o(|V |)) [5].

The above inapproximability results are for the worst case. For analyzing the average case performance of approximation
algorithms, a probability distribution of the input graphs must be assumed and the most widely used distribution of graphs
on n vertices is the random graph G(n, p), which is a graph on n vertices, and each edge is chosen to be an edge of G
independently and with a probability p, where 0 � p = p(n) � 1. A graph property holds asymptotically almost surely (a.a.s.)
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in G(n, p) if the probability that a graph drawn according to the distribution G(n, p) has the property tends to 1 as n tends
to infinity [1].

Let Ln = log1/(1−p) n. Bollobás [2] and Łuczak [7] showed that a.a.s. χ(G(n, p)) = (1 + o(1))n/Ln for a constant p and
χ(G(n, p)) = (1 + o(1))np/(2 ln(np)) for c/n � p(n) � o(1) where c is a constant. It follows from these results that a.a.s.
α(G(n, p)) = (1 − o(1))Ln for a constant p and α(G(n, p)) = (1 − o(1))2 ln(np)/p for C/n � p � o(1). The greedy algorithm,
which colors vertices of G(n, p) one by one and picks each time the first available color for a current vertex, is known to
produce a.a.s. in G(n, p) with p � nε−1 a coloring whose number of colors is larger than the χ(G(n, p)) by only a constant
factor (see Ch. 11 of the monograph of Bollobás [1]). Hence the largest color class produced by the greedy algorithm is a.a.s.
smaller than α(G(n, p)) only by a constant factor.

For the domination number γ (G(n, p)), Wieland and Godbole showed that a.a.s. it is equal to either �Ln −L((Ln)(ln n))�
+ 1 or �Ln −L((Ln)(ln n))� + 2, for a constant p or a suitable function p = p(n) [13]. It follows that a.a.s. i(G(n, p)) �
�Ln −L((Ln)(ln n))� + 1. Recently, Wang proved for i(G(n, p)) an a.a.s. upper bound of �Ln −L((Ln)(ln n))� + k + 1, where
k = max{1,L2} [12].

Average case performance analysis of an approximation algorithm over random instances could be inconclusive, because
the random instances usually have very special properties that distinguish them from real-world instances. For instance, for
a constant p, the random graph G(n, p) is expected to be dense. On the other hand, an approximation algorithm performs
very well on most random instances can fail miserably on some “hard” instances. For instance, it has been shown by
Kučera [6] that for any fixed ε > 0 there exists a graph G on n vertices for which, even after a random permutation
of vertices, the greedy algorithm produces a.a.s. a coloring using at least n/ log2 n colors, while χ(G) � nε . To overcome
this, Spielman and Teng [10] introduced the smoothed analysis. This new analysis is a hybrid of the worst case and the
average-case analyses, and it inherits the advantages of both, by measuring the expected performance of the algorithm
under slight random perturbations of the worst-case inputs. If the smoothed complexity of an algorithm is low, then it
is unlikely that the algorithm will take long time to solve practical instances whose data are subject to slight noises and
imprecision.

Formally, let A be the algorithm we want to analyze and Q be the quality measurement. Without loss of generality, we
assume the larger Q the worse the algorithm A performs, such as Q being the running time. Given an instance x, Q (A, x)
measures the performance of algorithm A on x. Let U denote the set of all instances. Let r be a random noise, σ be the
perturbation parameter measuring the strength of noise, and σ · |x| · r be the perturbation added to x (the magnitude of
the perturbation is related to the magnitude of input). The expected performance of algorithm A in the small neighborhood
of instance x, defined by the above perturbation model, is Er[Q (A, x + σ · |x| · r)]. The smoothed performance measure of
algorithm A under Q is taken as the worst of the expected performances over all instances of U . We observe that if the
smoothed performance measure of algorithm A under Q is good with some relatively small σ and some reasonable random
model for r, then it is unlikely algorithm A would perform very bad in real-world applications under quality measure
Q , because real-world instances are often subject to a slight amount of noise, especially when they are obtained from
measurements of real-world phenomena. A classic example is the Simplex method for linear programming. Simplex method
is a very practical algorithm, but it has exponential running time in the worst case. Spielman and Teng [10] had shown
that Simplex method has polynomial smoothed running time, which explains the above phenomenon perfectly. Though the
smoothed analysis concept was originally introduced for the complexity of algorithms, we extend its idea to depict the
essential properties of computational problems.

In this paper, we study the approximability of the minimum independent dominating set (MIDS) problem under the
smoothed analysis, and we present a simple deterministic greedy algorithm beating the strong inapproximability bound of
n1−ε , with polynomial expected running time. The MIDS problem, and the closely related independent set and dominating
set problems, have important applications in wireless networks, and have been studied extensively in the literature. Our
probabilistic model is the smoothed extension of random graph G(n, p) (also called semi-random graphs in [8]), proposed
by Spielman and Teng [11]: given a graph G = (V , E), we define its perturbed graph g(G, p) by negating the existence of
edges independently with a probability of p > 0. That is, g(G, p) has the same vertex set V as G but it contains edge e with
probability pe , where pe = 1 − p if e ∈ E or otherwise pe = p. For sufficiently large p, Manthey and Plociennik presented
an algorithm approximating the independence number α(g(G, p)) with a worst-case performance ratio O (

√
np) and with

polynomial expected running time [8].
Re-define Ln = log1/p n. We first prove on γ (g(G, p)), and thus on i(g(G, p)) as well, an a.a.s. lower bound of Ln −

L((Ln)(ln n)) if p > 1
n . We then prove on α(g(G, p)), and thus on i(g(G, p)) as well, an a.a.s. upper bound of 2 ln n/p

if p < 1
2 or 2 ln n/(1 − p) otherwise. Given that the a.a.s. values of α(G(n, p)) and i(G(n, p)) in random graph G(n, p), our

upper bound comes with no big surprise; nevertheless, our upper bound is derived by a direct counting process which might
be interesting by itself. Furthermore, we extend our counting techniques to prove on i(g(G, p)) a tail bound that, when
4 ln2 n/n < p � 1

2 , Pr[i(g(G, p)) �
√

4n/p] � 2−n . We then present a simple greedy algorithm to approximate i(g(G, p)), and
prove that its worst-case performance ratio is

√
4n/p and its expected running time is polynomial.

2. A.a.s. bounds on the independent domination number

We need the following several facts.
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