
Theoretical Computer Science 540–541 (2014) 13–26

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Reoptimization in machine scheduling

Nicolas Boria a,1, Federico Della Croce b,c,∗
a Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland
b D.A.I., Politecnico di Torino, Italy
c CNR, IEIIT, Torino, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 September 2012
Received in revised form 26 February 2013
Accepted 2 April 2014

Keywords:
Reoptimization
Machine scheduling
Min-sum cost function

This paper studies reoptimization versions of various min-sum scheduling problems. The
reoptimization setting can generally be described as follows: given an instance of the
problem for which an optimal solution is provided and given some local perturbations on
that instance, we search for a near-optimal solution for the modified instance requiring
very little computation. We focus on two kinds of modifications: job-insertions and
job-deletions. For all reoptimization problems considered, we show how very simple
reoptimization algorithms can ensure constant approximation ratios, and also provide some
lower bounds for whole classes of reoptimization algorithms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we present approximation algorithms for various min-sum scheduling problems in the reoptimization
setting, which can be described as follows: considering an instance I of a given problem Π for which an optimal solution
OPT is provided, and an instance I ′ which results from a local perturbation of I , can the information provided by OPT be
used to solve I ′ in a more efficient way (i.e., with a lower complexity and/or with a better approximation ratio) than if this
information was not available?

The first mention of the reoptimization framework can be found in [25] regarding a whole class of scheduling problems
and the setting was formally defined in [2] for metric tsp. Since then, many other optimization problems have been dis-
cussed in this setting, including Steiner tree [5,7,9,10,12,20,28], minimum spanning tree [15], as well as various versions of
tsp [3,4,8,11]. In [16,17] positive and negative approximation results are provided for various hereditary problems including
max independent set, max k-colorable subgraph, and max planar subgraph in the reoptimization setting where the ver-
tex set is modified. In [6], the max independent set problem, as well as min vertex cover and min set cover problems, is
discussed in a similar fashion although that perturbations there concern the edge-set of the initial graph. Alternative reop-
timization settings, where multiple solutions are given for the initial instance are also introduced and discussed in [13,14].
The interested reader can find a survey of all these results in [18]. A recent PhD dissertation on reoptimization can be found
in [27].

Although the first results regarding reoptimization were provided on a parallel machines scheduling problem with forbid-
den sets in [25], most problems tackled afterwards in this setting have been graph problems and to the authors’ knowledge,
no other scheduling problem has been discussed in this setting since then.

* Corresponding author.
E-mail addresses: nicolas.boria@supsi.ch (N. Boria), federico.dellacroce@polito.it (F. Della Croce).

1 Research supported by the Swiss National Science Foundation project 200020_144491/1 “Approximation Algorithms for Machine Scheduling Through
Theory and Experiments”.

http://dx.doi.org/10.1016/j.tcs.2014.04.004
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.04.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:nicolas.boria@supsi.ch
mailto:federico.dellacroce@polito.it
http://dx.doi.org/10.1016/j.tcs.2014.04.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.04.004&domain=pdf

14 N. Boria, F. Della Croce / Theoretical Computer Science 540–541 (2014) 13–26

This is however somehow in contrast with the important literature available on reactive scheduling (see [26]). As men-
tioned for instance in [21], reactive scheduling refers to the schedule modifications that may have to be made during project
execution starting from a baseline schedule. In some cases, the reactive scheduling effort may rely on very simple techniques
aimed at a quick schedule consistency restoration. To this purpose, by considering an optimal schedule as baseline schedule
and some jobs additions or deletions as schedule disruptions, we can see that scheduling reoptimization may be considered
as strictly linked to reactive scheduling, particularly with simple reoptimization strategies so that the baseline schedule is
only mildly modified.

This work tackles the reoptimization versions of various strongly NP-hard min-sum scheduling problems, under modifi-
cation of the job set (insertion or deletion of jobs). We analyze the approximation ratios of simple reoptimization strategies,
that merely insert the new job (jobs) into the initial optimum under job insertion, or keeps the scheduling unchanged
under job deletion. Hence, all reoptimization strategies presented require at most O (n) time. Yet, despite their extreme
simplicity, we show that all these strategies ensure constant approximation ratios, and also provide tight lower bounds for
some of them. We focus first on the total completion time performance measure and we analyze the performance of simple
and natural reoptimization strategies. In particular, we study the single machine total completion time scheduling problem
with different release times (denoted as 1|r j |∑ C j according to the three-field notation of [22]), the parallel machine total
completion time scheduling problem with different release times (denoted as P |r j|∑ C j) and the total completion time
permutation flow shop problem with different release times (denoted as F |r j,perm|∑ C j) both under job insertion and
deletion. Then, we consider the reoptimization version of the problem of maximizing the weighted sum of early jobs with
different release times in a parallel machines setting herewith denoted as P |r j|max

∑
w j Ū j (which is equivalent to the

more commonly considered P |r j |∑ w j U j problem) both under job insertion and deletion. Note that, as all these problems
are strongly NP-hard, the same obviously holds for the corresponding reoptimization version under job insertion. Indeed,
if one of these reoptimization versions were polynomial or pseudo-polynomial, then, starting from a trivial instance (such
as an empty instance, or an instance with a single job), it would suffice to incrementally build an optimal solution for any
instance, adding jobs one at a time and running the polynomial or pseudo-polynomial optimal algorithm after each inser-
tion. The whole procedure would then be polynomial or pseudo-polynomial and would produce an optimal solution for any
instance of the problem considered. On the other hand, as far as the reoptimization version of these problems under job
deletion is concerned, a specific proof of NP-hardness in the strong sense is provided for each problem considered.

Notice that, with respect to classical approximation, a ratio of e
e−1 ≈ 1.58 was given in [19] for the 1|r j |∑ C j problem

and a ratio of O (min{m1/2,n1/2}) was given in [24] for the F |r j,perm|∑ w j C j problem. Also, polynomial time approxima-
tion schemes have been proposed in [1] for the 1|r j |∑ C j problem and for the P |r j |∑ w j C j problem, although here at the
expense of a considerable computational effort when the deviation ε allowed is limited.

2. Minimizing total completion time under job insertion

In this section, we analyze the approximability of three min-sum scheduling problems, in the reoptimization setting
where a single job denoted by x is inserted in an instance for which an optimal scheduling OPT = [1, . . . ,n] is already
known.

For all problems, we will analyze a set of very simple and natural reoptimization strategies, that we will denote by Ai, j .
For a given couple of integers i, j, 1 � i � j � n + 1, the reoptimization algorithm Ai, j produces (j − i + 1) solutions, that
consist of inserting the new job in the initial optimal sequence between the kth and the (k+1)th for all possible k’s between
i and j, while leaving the rest of the scheduling unchanged. Then the algorithm outputs the best solutions among these
j − i + 1 candidates. For example the algorithm A1,n+1 will test all n + 1 possible positions (before job 1, between jobs 1
and 2, and so on up to the last possible position, which is after job n) to insert the new job x in the initial scheduling.

Remark 1. For two couples of integers i, j and i′, j′ , such that i′ � i and j′ � j, the algorithm Ai′, j′ always computes a
solution that is at least as good as Ai, j , since all candidate solutions tested by Ai, j are also tested by Ai′, j′ .

Here, we focus specifically on algorithm An,n+1, that produces only two solutions: it computes a first solution SOL1 by
placing the job x in the very last position, while keeping the rest of the initial scheduling unchanged, and a second solution
SOL2 by positioning x in the penultimate position, leaving the rest of the scheduling unchanged (hence, jobs (1, . . . ,n − 1)

are before job x, and n follows x in the last position), and returning the best solution SOL between SOL1 and SOL2.
Note that this algorithm does not only provide interesting approximation results as we will see below, but, considering

that it always schedules the new job towards the end of the initial solution, it also has the advantage of being imple-
mentable even in on-line settings where the new job is inserted after the scheduling process has started. Moreover, we
show that testing more positions does not guarantee a dramatic approximation improvement in the worst case.

We present tight approximation results for the algorithm An,n+1, and finally provide a general negative result for the
whole family Ai, j .

Download	English	Version:

https://daneshyari.com/en/article/438229

Download	Persian	Version:

https://daneshyari.com/article/438229

Daneshyari.com

https://daneshyari.com/en/article/438229
https://daneshyari.com/article/438229
https://daneshyari.com/

