
ELSEVIER

Contents lists available at SciVerse ScienceDirect

Applied Soil Ecology

journal homepage: www.elsevier.com/locate/apsoil

Review

Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands

Taniya Roy Chowdhury, Richard P. Dick*

School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA

ARTICLE INFO

Article history: Received 30 December 2011 Received in revised form 6 December 2012 Accepted 12 December 2012

Keywords:
Methane
Methanotrophs
Wetlands
Methane oxidation

13 C-PLFA
Stable isotope probing
Global warming

ABSTRACT

Methane (CH₄) is a critical greenhouse gas, with wetlands and flooded rice soils contributing >38% of the global emissions of CH₄. A key process that offsets CH₄ production is biological oxidation by methanotrophs that can consume as much as 90% of the CH₄ produced in aerobic soils. The objective was to review the literature on the biochemical pathways, ecology of methanotrophs, research methods, and environmental and management controls on CH₄ oxidation in wetlands. Methanotrophs have been extensively studied using phospholipid fatty acids (PLFA) but much less so using nucleic acid analysis or with the powerful stable-isotope probing technique of ¹³C-PLFA analysis. Of the environmental factors that affect CH₄ oxidation, temperature, water content and redox potential are the most important whereas a wide range of soil pH enables oxidation. Methane oxidation varies with season as functions of temperature and plant community shifts (changes with growth stage of C input chemistry and oxygenation from aquatic rhizospheres). Indirect evidence suggests there is greater CH₄ oxidation in pulsing than permanently flooded soils based on observations that static wetlands have greater emissions than pulsing wetlands. Basic research is needed on: the role of inorganic N species in controlling CH₄ oxidation pathways; phylogenetic analysis of methanotrophs; and environmental and edaphic effects on methanotroph growth and activity. Research is needed to develop wetland systems that optimize CH₄ oxidation relative to wetland type and environments and hydrology while maintaining and/or promoting other ecosystem services (e.g. C sequestration, pollution remediation, wildlife habitat, flood control).

© 2013 Elsevier B.V. All rights reserved.

Contents

1.	Introduction	9		
2.	Methanogenesis			
3. Types of methane oxidation and occurrence				
	3.1. Aerobic methane oxidation	10		
	3.2. Anaerobic methane oxidation	10		
4.	Biochemistry of aerobic methanotrophy	11		
	4.1. Obligate methanotrophs	11		
	4.2. The methane monooxygenase enzyme system	11		
	4.3. Facultative methanotrophs	12		
5.	Classification of aerobic methanotrophs	12		
	5.1. Classification of aerobic methanotrophs based on methane affinity			
	5.2. PLFA-based classification of methanotrophs			
	5.2.1. Competitive distribution of the Type I and Type II methanotrophs	13		
6.	Ecology of aerobic methanotrophs			
7.	Fate of C metabolized by methanotrophs			
8. Methods to study methanotrophs				
	8.1. Nucleic acid based approaches			
	8.2 Phoshpholipid analysis			

E-mail address: Richard.Dick@snr.osu.edu (R.P. Dick).

^{*} Corresponding author at: School of Environment and Natural Resources, 210 Kottman Hall, 2021 Coffey Road, The Ohio State University, Columbus, OH 43210-1085, USA. Tel.: +1 614 247 7605; fax: +1 614 292 7432.

9.	Estimation of methane oxidation rates using isotopic fractionation methods			
10.	10. Environmental controls on methane oxidation			
	10.1.	Temperature and pH	15	
	10.2.	Hydrology and redox potential	16	
	10.3.	Inorganic nitrogen	16	
	10.4.	Seasonal dynamics	17	
	10.5.	Methane concentrations	17	
11.	Concl	isions and future research needs	18	
References			18	

1. Introduction

There is a broad consensus in the scientific community that human activity is affecting the global climate (IPCC, 2007). Methane (CH₄) is a critical greenhouse gas contributing to global climate change, in part, because it absorbs infrared radiation (IR), nearly 25 times more efficiently than carbon dioxide (CO₂) (Ramaswamy et al., 2001). The atmospheric concentration of CH₄ as of 2005 was 1774 ppb, far exceeding the natural range for the past 650,000 years (IPCC, 2007). Atmospheric CH₄ is largely (70–80%) of biological origin as shown in Table 1.

Recent estimates of the global atmospheric CH₄ budget have revealed unexpected variations in CH₄ concentration such that its growth appears to have declined almost to a standstill in the past three decades (Heinman, 2011). Potentially contradictory studies by Kai et al. (2011) and Aydin et al. (2011) have attempted to answer the puzzling behavior of this atmospheric trace gas. Comparing Table 2 to Table 1 would suggest that CH₄ levels in the atmosphere are going down because total CH₄ oxidation is 577 Tg yr⁻¹ compared to 530 Tg yr⁻¹ production of CH₄. Even though CH₄ sinks are quite well understood, the apparent discrepancy showing reduced concentrations of atmospheric CH₄ has been attributed to the uncertainties in our understanding of the relative contributions of the various CH₄-generating processes. What this further underscores are the challenges in obtaining accurate field measurements for either CH₄ oxidation or genesis.

Methane oxidation is environmentally beneficial because the radiative absorption potential of CO₂ is lower than that of CH₄. During the microbial oxidation of CH₄ (methanotrophy), carbon (C) in CH₄ is either converted to CO₂ or assimilated into the cellular biomass of the aerobic methane-oxidizing (MO) bacteria (methanotrophs). Aerobic methanotrophy is the key process that counteracts CH₄ emissions from submerged environments such as wetlands, peat bogs, landfills (Table 2) (Segers, 1998; Wagner et al., 2003). Additionally, aerobic methanotrophs consume 43%–90% of the CH₄ produced in aerobic soils being consumed by microbial oxidation (Roslev and King, 1995, Le Mer and Roger, 2001; Hao et al., 1988) which is estimated to be $40 \,\mathrm{Tg}\,\mathrm{y}^{-1}$ (Reeburgh et al., 1993). Globally, the CH₄ oxidation sink in soils reportedly consumes 7-10% (Table 2) of the net total annual global emission of CH₄, and is roughly equal to the annual increase in atmospheric CH₄ (Watson et al., 1990).

The net flux of CH₄ from a given environment is a balance between the two opposing processes: production by methanogenic archaea and consumption by methanotrophic bacteria and/or archaea. The global CH₄ cycle consists of both atmospheric (mainly chemical) and terrestrial (mainly biological) processes (Reeburgh et al., 1993). Although the soil sink strength for CH₄ is relatively small, its absence would result in an increase in the atmospheric CH₄ concentration by approximately 1.5 times (Duxbury, 1994; Whalen, 2005).

Wetlands are the largest natural source of CH_4 with average estimates of $145\,\mathrm{Tg}\,\mathrm{y}^{-1}$, compared to the next highest sources, energy generation $(95\,\mathrm{Tg}\,\mathrm{y}^{-1})$ and ruminant animals $(93\,\mathrm{Tg}\,\mathrm{y}^{-1})$

(Table 1). Additionally, it is important to note that rice production is a significant source of CH_4 because of the large areas grown under flooded conditions worlwide. Flooded rice paddies and wetland systems constitute approximately 38% of the total average CH_4 production globally.

Most of the research that has been done on CH₄ oxidation is limited mainly on upland aerobic soils. To our knowledge there are no comprehensive reviews on methanotrophs and CH₄ oxidation relevant to flooded soils. This is important for information synthesis, understanding the state of the research and determination of the gaps in knowledge on methanotrophy in flooded environments. Therefore, the objective of this paper is to review information on the ecology of methanotrophs, their role in regulation of CH₄ consumption from diverse ecosystems with a focus on flooded soils (freshwater wetlands and rice paddies), the biochemical basis of the proposed pathways of CH₄ oxidation, and the techniques used to study methanotrophs in different ecological systems which is important to direct future research on methanotrophy. This review is significant, particularly for constructed wetlands, flooded rice soils, and possibly natural wetlands because these systems can or are being managed for water regimes, nutrients, and plant species; factors that could be optimized to promote CH₄ oxidation. The second objective is to establish a basis to develop management systems to promote CH₄ oxidation of flooded soils. A brief overview of methanogenesis is included to facilitate an overall understanding of the CH₄ cycle.

2. Methanogenesis

Methanogenesis occurs when microorganisms from the domain Archaea called methanogens use C in CO_2 or, use other low molecular weight organic compounds such as one having a methyl group (see below) via alternative biochemical pathways, as an electron acceptor for the production of CH_4 . CH_4 production requires extremely reduced conditions, with a redox potential below $-200\,\mathrm{mV}$, a condition after other terminal electron acceptors (e.g. O_2 , NO_3^- , and SO_4^{2-}) have been reduced (Mitsch and Gosselink, 2007). Wetlands, because of their large surface area and extremely reducing conditions are a major source of CH_4 with estimates of 25% of the annual emissions on a global basis (Mitsch and Gosselink, 2007).

Twenty-six genera and more than 60 species of methanogens have been recorded (Huttunen et al., 2003; Lee et al., 2009; Shin et al., 2008; Talbot et al., 2008). Methanogens have long been classified based on the terminal electron donors that include the simple compounds of: $H_2 + \mathrm{CO}_2$, acetate, formate, methylated compounds (methanol, methylamines, dimethylsulfur), and primary and secondary alcohols (Hanson and Hanson, 1996). This forms the basis of defining the five trophic groups of methanogens. The two major pathways of CH_4 production in most environments where organic matter decomposition is significant (digesters, freshwater sediments, submerged soils) are acetotrophy and CO_2 reduction.

Download English Version:

https://daneshyari.com/en/article/4382436

Download Persian Version:

https://daneshyari.com/article/4382436

Daneshyari.com