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Several logic-based decision problems have been shown to be reducible to the emptiness
problem of automata. In a similar way, non-standard reasoning problems can be reduced
to the computation of the behaviour of weighted automata. In this paper, we consider
a variant of weighted Büchi automata working on (unlabelled) infinite trees, where the
weights belong to a lattice. We analyse the complexity of computing the behaviour of this
kind of automata if the underlying lattice is not distributive.
We show that the decision version of this problem is in ExpTime and PSpace-hard in
general, assuming that the lattice operations are polynomial-time computable. If the lattice
is what we call linear-space-computable-encoded, then the upper bound can be reduced
to PSpace, but the lower bound also decreases to NP-hard and co-NP-hard. We conjecture
that the upper bounds provided are in fact tight.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Automata have long been recognized as tools for solving logic-based reasoning tasks. Beyond well-known results on the
equivalence of recognizable and MSOL-definable languages [10,20], automata working on infinite inputs have been success-
fully applied to decide satisfiability of linear temporal logic (LTL) [31,22] formulas, and reason with description logic (DL) [2]
knowledge bases, to name just two well-known examples. The main idea in both cases is to construct an automaton A that
accepts all the (well-structured) models of the input, and perform an emptiness test on A. The constructed automaton is a
generalized Büchi automaton on infinite words in the case of LTL [38], and a looping automaton (that is, a Büchi automaton
where all states are accepting) on infinite trees for DL reasoning [3,7,11,28].1

In most of these constructions, it is possible to use a simplified alphabet having only one symbol. Additional alphabet
symbols can be encoded within the set of states of the automaton, and in this case the relevant models are described by
the accepting runs of the automaton, rather than by the recognized language.

Automata-based decision procedures have been generalized to weighted automata over lattices as a means to deal with
non-standard reasoning problems, such as axiom-pinpointing [6,24], access control [4,25], or context-based reasoning [5],
as well as with non-standard semantics like fuzzy [9,34,35] and possibilistic semantics [30,32]. The idea behind these

* Corresponding authors.
E-mail addresses: karsten.lehmann@nicta.com.au (K. Lehmann), penaloza@tcs.inf.tu-dresden.de (R. Peñaloza).

1 Other automata models have been considered in the literature, e.g. [12]. For the sake of brevity and clarity, in this paper we focus only on those based
on Büchi automata.
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constructions is that every model can be associated to a “weight” corresponding to the non-standard task. For example, in
the axiom-pinpointing scenario, where one is interested in finding the causes of an inconsistency, this weight will be the
set of axioms violated by the model.2 We are then interested in finding the supremum of the weights of all these models,
which in the case of axiom-pinpointing will be the set of all sets of axioms that prevent the existence of a model.

Suppose that we can associate every transition of the constructed automaton with a weight in such a way that the
infimum of the weights of all transitions appearing in a successful run (that is, the weight of this successful run) corresponds
exactly to the weight of the model it represents, as described before. Then, this kind of non-standard reasoning reduces to
a computation of the behaviour of the weighted automaton. To fully understand the complexity of non-standard reasoning
tasks, we need to study how hard it is to compute the behaviour of lattice automata. Thus, we are interested in the
complexity of computing the behaviour of Büchi automata on infinite trees, whose weights belong to a lattice.

For distributive lattices, it is known that the behaviour of generalized Büchi automata can be computed in polynomial
time [6,16], matching the complexity of deciding emptiness of (unweighted) Büchi automata [33,37]. This result provides
tight upper bounds for the complexity of axiom-pinpointing in expressive DLs, and of reasoning in special kinds of fuzzy
and possibilistic DLs and LTL. Unfortunately, distributivity of the lattice is not always a valid assumption. For example, in
access control the underlying access lattice is often provided by the security manager, or automatically generated from a
compact description of the access rights needed [14], and it can take any shape. In this paper we study the complexity of
computing the behaviour in case the lattice is not distributive. We notice that without distributivity, the automata are not
any more weighted automata in the standard sense, as defined in [26,27,17]. Variants of weighted automata on finite [18]
and infinite [19] trees, in which the distributivity assumption is dropped have been recently studied; in fact, the underlying
algebra has been generalized to more complex valuation monoids [15]. However, those papers focus mostly on the expres-
sivity of the automata, and their relation with weighted logics. To the best of our knowledge, there has been no systematic
study of the complexity of computing the behaviour of automata over non-distributive structures.

We show that the behaviour of automata over arbitrary lattices can be computed by a simple “black-box” mechanism
that tests emptiness of exponentially many unweighted Büchi automata. This yields an exponential time upper bound for
the computation of the behaviour, assuming that lattice operations can be performed in polynomial time. Unfortunately, the
best-case running time of this algorithm is also exponential on the number of different weights appearing in the automation.
If the lattice can be represented in such a way that its operations do not increase the space requirements (a condition we
call linear-space-computable-encoded), then this upper bound can be improved to polynomial space. The exponential upper
bound for general lattices is not new; in fact, it is a simple consequence of the results from [19], where it was shown that
every recognizable tree language over bi-locally finite strong bimonoids can be expressed as a recognizable step-function;
i.e., the behaviour of every automaton over such strong bimonoids can be described as a finite weighted sum of languages
accepted by (unweighted) automata. The tighter upper bound for the class of linear-space-computable-encoded lattices, on
the other hand, was previously unknown.

Regarding lower bounds, we provide a linear-space-computable-encoded lattice Lsat and show that computing the be-
haviour of automata over this lattice is hard for the classes NP and co-NP. We further improve the lower bound for general
lattices by providing a lattice Lqbf for which computing the behaviour is PSpace-hard. This second lattice, however, is not
linear-space-computable-encoded. The best previously known lower bound for the complexity of computing the behaviour
was the polynomial-time lower bound obtained for distributive lattices [6,16]. Our results show that dropping the distribu-
tivity does increase the complexity of the problem. To the best of our efforts, we were unable to close the gap between the
lower and upper bounds found; however, we conjecture that the upper bounds are tight.

The paper is divided as follows. We first recall basic concepts from lattice and automata theory, and formally define the
decision problem we study. Then, in Section 3 we provide upper bounds for the complexity of this problem by means of an
algorithm. The lower bounds are provided in Section 4, before concluding the paper.

2. Lattice tree automata

We study a simple class of weighted automata that receive as input infinite unlabelled trees of a fixed arity k, and use
elements of a possibly infinite lattice as weights. For a positive integer k, we denote the set {1, . . . ,k} by [k]. We identify the
nodes of an infinite tree by words from [k]∗ in the usual way: the root node is represented by the empty word ε, and the
i-th successor of a node u is represented by ui for i,1 � i � k. In the case of labelled trees, we refer to the labelling of the
node u ∈ [k]∗ in the tree r by r(u). An infinite tree r with labels from a set Q can be described as a function r : [k]∗ → Q .

As previously said, we consider only unlabelled trees as inputs for our automata. Given an arity k, there is exactly one
such tree, that we simply call [k]∗ . We will often refer to paths in this tree. A path is a subset p ⊆ [k]∗ that contains the
empty word (ε ∈ p), is closed under prefixes (i.e., if ui ∈ p, then u ∈ p for every u ∈ [k]∗, i ∈ [k]), and every node has exactly
one successor (that is, if u ∈ p, then there is exactly one i ∈ [k] with ui ∈ p).

We call the unary tree, where k = 1, an infinite word. Notice that an infinite word has exactly one path that is equivalent
to the word itself. As usual, we will often represent an infinite word with labels from a set Q as an infinite sequence of
elements from Q .

2 The actual weights used are slightly more complex than described here. For the full details see [6].
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