ELSEVIER

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Monoid-matrix type automata

Hui Xu^{a,b}, Jing Tian^{c,1}, Xianzhong Zhao^{d,2,*}

^b School of Science, Air Force Engineering University, Xi'an, Shaanxi, 710051, PR China

ARTICLE INFO

Article history: Received 3 February 2013 Accepted 7 August 2013 Communicated by M. Ito

Keywords: Monoid-matrix type automata Cyclic automata Regular monoid-matrix type automata

ABSTRACT

Monoid-matrix type automata are introduced and studied in this paper. We give a characterization of the cyclic monoid-matrix type automata and the regular monoid-matrix type automata. Also, we provide a method to determine the structures of canonical $S\ell$ -automata (canonical C-automata, respectively) whose endomorphism monoids are isomorphic to a given finite meet semilattice with the greatest element (Clifford monoid, respectively).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Regular system

An automaton $\mathbf{A} = (A, \Sigma, \delta)$ consists of the following data:

- (i) A is a finite nonempty set of states;
- (ii) Σ is a finite nonempty set, called an alphabet;
- (iii) $\delta: A \times \Sigma \to A$, called a state transition function.

Let Σ^* denote the *free monoid* generated by Σ . An element of Σ^* is called a *word* over Σ and ϵ is called the *empty word*. The state transition function can be extended to the function from $A \times \Sigma^*$ to A as follows:

- (i) $(\forall a \in A) \ \delta(a, \epsilon) = a$;
- (ii) $(\forall a \in A, x \in \Sigma, u \in \Sigma^*) \delta(a, ux) = \delta(\delta(a, u), x).$

Let $\mathbf{A} = (A, \Sigma, \delta)$ and $\mathbf{B} = (B, \Sigma, \gamma)$ be automata. A mapping f from A into B is called a homomorphism from \mathbf{A} into \mathbf{B} if $f(\delta(a,x)) = \gamma(f(a),x)$ holds for any $a \in A$ and $x \in \Sigma$. If a homomorphism f is bijective, then f is called an isomorphism. If there exists an isomorphism from \mathbf{A} onto \mathbf{B} , then \mathbf{A} and \mathbf{B} are said to be isomorphic to each other and denoted by $\mathbf{A} \cong \mathbf{B}$. Moreover, a homomorphism (an isomorphism) from \mathbf{A} into itself is called an endomorphism (an automorphism) of \mathbf{A} . It is clear that $E(\mathbf{A})(G(\mathbf{A}))$ of all endomorphisms (automorphisms) of \mathbf{A} forms a monoid (group) on the usual composition, called the endomorphism monoid (automorphism group) of \mathbf{A} .

^c School of Science, Xi'an University of Technology, Xi'an, Shaanxi, 710048, PR China

^d College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, PR China

^{*} Corresponding author.

E-mail addresses: xaxuhui716@126.com (H. Xu), ttianjing@qq.com (J. Tian), xianzhongzhao@263.net (X. Zhao).

¹ The second author is supported by Grant of Natural Science Foundation of Shaanxi Province (2011JQ1017).

² The third author is supported by National Natural Science Foundation of China (11261021) and Grant of Natural Science Foundation of Jiangxi Province (2010GZS0093).

An automaton **A** is called *G-automaton* ($S\ell$ -automaton, *C-automaton*, respectively), if $E(\mathbf{A})$ is a group (meet semilattice, Clifford monoid, respectively).

The study of automorphism groups and endomorphism monoids of automata was initiated by Fleck (1962, 1965) and Weeg (1962) in [1–4], and followed by Barners (1965, 1970), Bayer (1966), Trauth (1966), Shibata (1972), Masunaga et al. (1973), and Dörfler (1978) in [5–11].

Let $\mathbf{A} = (A, \Sigma, \delta)$ be an automaton. If $\delta(s, aa) = \delta(s, a)$ holds for any $s \in A$ and any $a \in \Sigma$, then \mathbf{A} is said to be asynchronous. A state a in A is called a *generator* of \mathbf{A} [10] if for any $b \in A$, there exists $u \in \Sigma^*$ such that $\delta(a, u) = b$. The set of all generators of \mathbf{A} is denoted by $Gen(\mathbf{A})$, called the *generating set* of \mathbf{A} . An automaton \mathbf{A} is said to be *cyclic* (*strongly connected*) if $Gen(\mathbf{A}) \neq \emptyset$ ($Gen(\mathbf{A}) = A$). Obviously, if \mathbf{A} is a strongly connected automaton, then for any pair of states $a, b \in A$, there exists a word $u \in \Sigma^*$ such that $\delta(a, u) = b$, and the reverse is also true.

Based on the study of the automorphism group of a strongly connected automaton, Ito [12–17] provided a representation of a strongly connected automaton $\mathbf{A} = (A, \Sigma, \delta)$ by regular group-matrix type automaton $\mathbf{A}' = \widehat{(G(\mathbf{A})_n}, \Sigma, \delta_{\Psi})$ of order n on the automorphism group $G(\mathbf{A})$ such that $\mathbf{A}' \cong \mathbf{A}$. Further, given a finite group $G(\mathbf{A})$ and $G(\mathbf{A})$ determine the structures of strongly connected automata whose automorphism groups are isomorphic to $G(\mathbf{A})$.

Following Ito, Tian and Zhao introduced the notion of canonical automaton in [18,19]. They proved both strongly connected automaton and cyclic commutative asynchronous automaton are canonical. Also, they provided the representation of canonical automata by regular monoid-matrix type automata. This generalizes and extends Ito's result on the representation of strongly connected automata.

Developing Ito's idea, we study the structures of canonical $S\ell$ -automata and canonical C-automata by means of regular monoid-matrix type automata.

In Section 2, some notions and notations, such as canonical automata and monoid-matrix type automata, are recalled. In Section 3, the cyclic monoid-matrix type automata and the regular monoid-matrix type automata are studied and their characterizations are given, respectively. Further, in Section 4, we give a necessary and sufficient condition for two regular (n, S)-automata isomorphic to each other in the wider sense. Based on these results, we provide in Section 5 (Section 6, respectively) a method to determine the structures of canonical $S\ell$ -automata (canonical C-automata, respectively) whose endomorphism monoids are isomorphic to a given finite meet semilattice with the greatest element (Clifford monoid, respectively).

2. Preliminaries

Recall the following notions and notations which will be of use in the later. Let $\mathbf{A} = (A, \Sigma, \delta)$ be a cyclic automaton. A binary relation \mathcal{L} on \mathbf{A} is defined as follows:

$$\mathcal{L} \triangleq \{(a,b) \in A \times A \mid (\exists s \in Gen(\mathbf{A})) \ a,b \in O_s\},\$$

where O_S denotes the set $\{f(s)|f\in E(\mathbf{A})\}$. If \mathcal{L} is an equivalence relation on A, then \mathbf{A} is said to be canonical in [19]. A canonical automaton is said to be canonical G-automaton (canonical $S\ell$ -automaton, canonical G-automaton, respectively), if it is a G-automaton (G-automaton, G-automaton, G-automaton, G-automaton, respectively). Tian [19] provided a representation of canonical automata by the regular monoid-matrix type automata.

Suppose that (S, \cdot) is a finite monoid with the identity 1_S . If we adjoin an extra element 0 to the set S and define

$$0 \cdot 0 = 0$$
 and $s0 = 0s = s$ for any $s \in S$,

then $S \cup \{0\}$ becomes a semigroup with the zero element 0, which is denoted by 0S . Also, we define a partial operation + on $S \cup \{0\}$ as follows:

```
* 0 + 0 = 0 and s + 0 = 0 + s = s for any s \in S;
* s + s' has no sense for any s, s' \in S.
```

Let n be a positive integer and $\alpha=(a_1,a_2,\ldots,a_n)$ a row vector over 0S . If there exists a unique positive number $i\in\{1,2,\ldots,n\}$ such that $a_i\neq 0$, then α is called a monoid-vector of order n on S [19]. We shall denote the set of all monoid-vectors of order n on S by \widehat{S}_n . Define S as the usual scalar product for any S and S are S and S and S and S are S and S and S are S are S and S are S are S are S and S are S are S are S are S and S are S are S and S are S and S are S are S and S are S and S are S and S are S are S and S are S are S and S are S and S are S and S are S are S and S are S are S and S are S and S are S and S ar

Put

$$\varepsilon_1 = (1_S, 0, \dots, 0)$$

$$\varepsilon_2 = (0, 1_S, \dots, 0)$$

$$\dots$$

$$\varepsilon_n = (0, 0, \dots, 1_S).$$
Then $\widehat{S}_n = \{s\varepsilon_i \mid s \in S, \ i = 1, 2, \dots, n\}.$

Download English Version:

https://daneshyari.com/en/article/438351

Download Persian Version:

https://daneshyari.com/article/438351

<u>Daneshyari.com</u>