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Monoid-matrix type automata are introduced and studied in this paper. We give a
characterization of the cyclic monoid-matrix type automata and the regular monoid-
matrix type automata. Also, we provide a method to determine the structures of canonical
S�-automata (canonical C-automata, respectively) whose endomorphism monoids are
isomorphic to a given finite meet semilattice with the greatest element (Clifford monoid,
respectively).
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1. Introduction

An automaton A = (A,Σ, δ) consists of the following data:

(i) A is a finite nonempty set of states;
(ii) Σ is a finite nonempty set, called an alphabet;

(iii) δ : A × Σ → A, called a state transition function.

Let Σ∗ denote the free monoid generated by Σ . An element of Σ∗ is called a word over Σ and ε is called the empty
word. The state transition function can be extended to the function from A × Σ∗ to A as follows:

(i) (∀a ∈ A) δ(a, ε) = a;
(ii) (∀a ∈ A, x ∈ Σ, u ∈ Σ∗) δ(a, ux) = δ(δ(a, u), x).

Let A = (A,Σ, δ) and B = (B,Σ,γ ) be automata. A mapping f from A into B is called a homomorphism from A into B if
f (δ(a, x)) = γ ( f (a), x) holds for any a ∈ A and x ∈ Σ . If a homomorphism f is bijective, then f is called an isomorphism. If
there exists an isomorphism from A onto B, then A and B are said to be isomorphic to each other and denoted by A ∼= B.
Moreover, a homomorphism (an isomorphism) from A into itself is called an endomorphism (an automorphism) of A. It is
clear that E(A)(G(A)) of all endomorphisms (automorphisms) of A forms a monoid (group) on the usual composition, called
the endomorphism monoid (automorphism group) of A.
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An automaton A is called G-automaton (S�-automaton, C-automaton, respectively), if E(A) is a group (meet semilattice,
Clifford monoid, respectively).

The study of automorphism groups and endomorphism monoids of automata was initiated by Fleck (1962, 1965) and
Weeg (1962) in [1–4], and followed by Barners (1965, 1970), Bayer (1966), Trauth (1966), Shibata (1972), Masunaga et al.
(1973), and Dörfler (1978) in [5–11].

Let A = (A,Σ, δ) be an automaton. If δ(s,aa) = δ(s,a) holds for any s ∈ A and any a ∈ Σ , then A is said to be asyn-
chronous. A state a in A is called a generator of A [10] if for any b ∈ A, there exists u ∈ Σ∗ such that δ(a, u) = b. The set
of all generators of A is denoted by Gen(A), called the generating set of A. An automaton A is said to be cyclic (strongly
connected) if Gen(A) �= ∅ (Gen(A) = A). Obviously, if A is a strongly connected automaton, then for any pair of states a,b ∈ A,
there exists a word u ∈ Σ∗ such that δ(a, u) = b, and the reverse is also true.

Based on the study of the automorphism group of a strongly connected automaton, Ito [12–17] provided a representation
of a strongly connected automaton A = (A,Σ, δ) by regular group-matrix type automaton A′ = (̂G(A)n,Σ, δΨ ) of order n
on the automorphism group G(A) such that A′ ∼= A. Further, given a finite group G , he gave a method to determine the
structures of strongly connected automata whose automorphism groups are isomorphic to G .

Following Ito, Tian and Zhao introduced the notion of canonical automaton in [18,19]. They proved both strongly con-
nected automaton and cyclic commutative asynchronous automaton are canonical. Also, they provided the representation of
canonical automata by regular monoid-matrix type automata. This generalizes and extends Ito’s result on the representation
of strongly connected automata.

Developing Ito’s idea, we study the structures of canonical S�-automata and canonical C-automata by means of regular
monoid-matrix type automata.

In Section 2, some notions and notations, such as canonical automata and monoid-matrix type automata, are recalled.
In Section 3, the cyclic monoid-matrix type automata and the regular monoid-matrix type automata are studied and their
characterizations are given, respectively. Further, in Section 4, we give a necessary and sufficient condition for two regular
(n, S)-automata isomorphic to each other in the wider sense. Based on these results, we provide in Section 5 (Section 6,
respectively) a method to determine the structures of canonical S�-automata (canonical C-automata, respectively) whose
endomorphism monoids are isomorphic to a given finite meet semilattice with the greatest element (Clifford monoid, re-
spectively).

2. Preliminaries

Recall the following notions and notations which will be of use in the later.
Let A = (A,Σ, δ) be a cyclic automaton. A binary relation L on A is defined as follows:

L�
{
(a,b) ∈ A × A

∣∣ (∃s ∈ Gen(A)
)

a,b ∈ O s
}
,

where O s denotes the set { f (s)| f ∈ E(A)}. If L is an equivalence relation on A, then A is said to be canonical in [19].
A canonical automaton is said to be canonical G-automaton (canonical S�-automaton, canonical C-automaton, respectively),
if it is a G-automaton (S�-automaton, C-automaton, respectively). Tian [19] provided a representation of canonical automata
by the regular monoid-matrix type automata.

Suppose that (S, ·) is a finite monoid with the identity 1S . If we adjoin an extra element 0 to the set S and define

0 · 0 = 0 and s0 = 0s = s for any s ∈ S,

then S ∪ {0} becomes a semigroup with the zero element 0, which is denoted by 0 S . Also, we define a partial operation +
on S ∪ {0} as follows:

∗ 0 + 0 = 0 and s + 0 = 0 + s = s for any s ∈ S;
∗ s + s′ has no sense for any s, s′ ∈ S .

Let n be a positive integer and α = (a1,a2, . . . ,an) a row vector over 0 S . If there exists a unique positive number
i ∈ {1,2, . . . ,n} such that ai �= 0, then α is called a monoid-vector of order n on S [19]. We shall denote the set of all monoid-
vectors of order n on S by Ŝn . Define sα as the usual scalar product for any s ∈ S and any α ∈ Ŝn .

Put

ε1 = (1S ,0, . . . ,0)

ε2 = (0,1S , . . . ,0)

· · ·
εn = (0,0, . . . ,1S).

Then Ŝn = {sεi | s ∈ S, i = 1,2, . . . ,n}.
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