
Theoretical Computer Science 520 (2014) 133–137

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note

Partitioning powers of traceable or hamiltonian graphs ✩

Olivier Baudon a,b, Julien Bensmail a,b, Jakub Przybyło c, Mariusz Woźniak c,∗
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A graph G = (V , E) is arbitrarily partitionable (AP) if for any sequence τ = (n1, . . . ,np)

of positive integers adding up to the order of G , there is a sequence of mutually
disjoint subsets of V whose sizes are given by τ and which induce connected graphs.
If, additionally, for given k, it is possible to prescribe l = min{k, p} vertices belonging to the
first l subsets of τ , G is said to be AP + k.
The paper contains the proofs that the kth power of every traceable graph of order at least
k is AP + (k − 1) and that the kth power of every hamiltonian graph of order at least 2k is
AP + (2k − 1), and these results are tight.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider a simple graph G = (V , E) of order n. A sequence τ = (n1, . . . ,np) of positive integers is called admissible for G
if it is a partition of n, i.e., n1 + · · · + np = n. If additionally there exists a partition (V 1, . . . , V p) of the vertex set V such
that each V i induces a connected subgraph of order ni in G , then we say that τ is realizable in G , while (V 1, . . . , V p) is
called a realization of τ in G . If every admissible sequence is also realizable in G , then we say that this graph is arbitrarily
partitionable (or arbitrarily vertex decomposable) and we call it an AP graph for short.

The notion of AP graphs was first introduced by Barth, Baudon and Puech in [2], and motivated by the following problem
in computer science. Consider a network connecting different computing resources; such a network is modelled by a graph.
Suppose there are p different users, where the ith one needs ni resources from our network. The subgraph induced by the
set of resources attributed to each user should be connected and each resource should be attributed to one user. So we are
seeking a realization of the sequence τ = (n1, . . . ,np) in this graph. Suppose that we want to do it for any number of users
and any sequence of request. Thus, such a network should be an AP graph.

Independently (see [7] or [9]), this problem was also considered as a natural analogy of the similar notion in which
vertices are replaced by edges (see for instance [1] or [8]).

The problem of deciding whether a given graph is arbitrarily vertex decomposable has been considered in several papers.
Obviously, a graph needs to be connected in order to be AP. The investigation of AP trees gained lots of attention in this
context, since a connected graph is AP if one of its spanning trees is AP. It turned out, however, that the structure of AP
trees is not obvious in general (see for instance [3–5] or [14]).

Since each traceable (i.e. containing a hamiltonian path) graph is evidently AP, each condition implying the existence of
a hamiltonian path in a graph also implies that the graph is AP. So, AP graphs may be considered as a generalization of
traceable (or hamiltonian) graphs (see for instance [10]).
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Suppose now that as managers of the computer network we have a number of at most k specially privileged clients
(users), so-called vip’s, each of whom may choose one computing resource which must be attributed to their connected
subnetwork. It might be a powerful or conveniently located computer, which may serve our vip as an administrative center
for managing the subnetwork. Then we naturally obtain the following modification of our model on graphs: Let G = (V , E)

be a graph of order n and let n > k. The graph G is said to be AP + k if for any partition τ = (n1, . . . ,np) of n and any
sequence (u1, . . . , uk′ ) of k′ pairwise distinct vertices of G with k′ � min{k, p}, there exists a realization (V 1, . . . , V p) of τ
in G such that u1 ∈ V 1, . . . , uk′ ∈ Vk′ .

Observe that we have adopted the convention that the numbers representing the sizes of subnetworks attributed to vip’s
are listed in the beginning of the sequence τ .

If the number of subnetworks (users) is limited, say by r, i.e. we can realize in G each sequence τ = (n1, . . . ,np) with
p � r, we say that G is r-AP. So, a graph is AP if it is r-AP for r = 1,2, . . . (see [12,13] and [15] for algorithmic approach for
small k).

If additionally for a given s � r, each of the first s′ users for any s′ � min{s, p} is allowed to choose a vertex belonging
to their subnetwork, then the corresponding graph G of order n > r is called r-AP + s.

The most significant result concerning these notions is the following famous result on k-AP + k graphs by Győri [6] and,
independently, Lovász [11].

Theorem 1. Every k-connected graph G is k-AP + k.

It is straightforward to notice that the converse is also true. Indeed, removal of k − 1 vertices v1, . . . , vk−1 cannot
disconnect a k-AP + k graph G , since otherwise there would not exist a realization (V 1, . . . , Vk) of an admissible sequence
(1, . . . ,1,n − k + 1) in G such that v1 ∈ V 1, . . . , vk−1 ∈ Vk−1.

Analogously, by analyzing an admissible sequence (1, . . . ,1,n − k), one can easily see that the following observation
holds.

Observation 2. Every AP + k graph has to be (k + 1)-connected.

It is worth noting that if we change the requirement concerning the number of parts we partition our network into (from
bounded to arbitrary case), this may have dramatical consequences. For instance, consider the complete bipartite graph Kk,k .
Since it is k-connected, then by Theorem 1, it is also k-AP + k. On the other hand, if we remove two vertices on the “same
side” of Kk,k , we obtain the graph Kk,k−2, which evidently does not contain a perfect matching. In other words, with the
above choice of two vip’s, the sequence (1,1,2, . . . ,2) is not realizable. In consequence, the graph Kk,k is not even AP + 2.

Given a graph G = (V , E), its kth power Gk is the graph obtained from G by adding the edge between every pair of
vertices with distance at most k in G . In this paper we prove that kth powers of traceable graphs are AP + (k − 1), see
Corollary 7, and that kth powers of hamiltonian graphs are AP + (2k − 1), see Corollary 9. These results are sharp.

2. Results

Given a path Pn (or a cycle Cn), its consecutive vertices v1, v2, . . . , vn define a natural orientation of the path (or the
cycle). We shall call them also the consecutive vertices of its kth power P k

n (or Ck
n). Similarly, v1 and vn will be called the

first and the last vertices of P k
n (Ck

n), respectively.
In both cases, for a vertex x, we shall also use the notation x+ and x− in order to denote the next or the previous vertex

to x, respectively, with respect to the natural orientation. For two vertices a and b of the cycle Cn , we denote by aCnb the
set of all consecutive vertices of Cn starting from a and ending at b with respect to the natural orientation of the cycle.

First, we prove that kth powers of paths are AP + (k − 1). We shall use Lemma 5 below, which is even stronger than
required for this purpose. The both results however will be then necessary to show that kth powers of cycles are AP +
(2k − 1). Since the property of being AP + k is monotone with respect to adding edges, the results for paths and cycles
immediately imply the corresponding properties for traceable and hamiltonian graphs, i.e., Corollaries 7 and 9. Note here
also that our results for paths (hence also for the family of traceable graphs) and for cycles (thus for hamiltonian graphs)
are tight, since the connectivity of the kth power of a path Pn , n � k + 1, is k, and the connectivity of the kth power
of a cycle Cn , n � 2k + 1, is 2k. This is obvious for paths, while for cycles it is sufficient to notice that so that we could
disconnect two vertices u, v of Ck

n , these must be at distance more than k in Cn . Then we have to remove (at least) k
consecutive vertices from each of the two paths joining u and v in Cn .

Below we state two basic observations concerning the operation of removing a vertex from a graph G = P k
n being the kth

power of a path Pn . Let v1, . . . , vn be the consecutive vertices of Pn . By a graph obtained by removing the first (respectively,
the last) vertex of G we mean the graph G \ {v1} (respectively, G \ {vn}) with consecutive vertices given by v2, . . . , vn or
v1, . . . , vn−1, respectively. By a graph obtained by removing other than the first or the last vertex of G , say x, we mean the
graph G \ {x} with consecutive vertices given by v1, . . . , x−, x+, . . . , vn .

Observation 3. A graph obtained by removing the first or the last vertex of any kth power of a path is also a kth power of a path.
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