GfÖGfÖ Ecological Society of Germany, Austria and Switzerland Basic and Applied Ecology 16 (2015) 661-664 Basic and Applied Ecology www.elsevier.com/locate/baae **EDITORIAL** ## Agricultural landscapes and ecosystem services in South-East Asia—the LEGATO-Project Josef Settele^{a,b,*}, Joachim H. Spangenberg^{a,c}, Kong Luen Heong^{d,q}, Benjamin Burkhard^{e,f}, Jesus Victor Bustamante^g, Jimmy Cabbigat^g, Ho Van Chien^h, Monina Escaladaⁱ, Volker Grescho^{a,j}, Le Huu Hai^k, Alexander Harpke^a, Finbarr G. Horgan^d, Stefan Hotes^l, Reinhold Jahn^m, Ingolf Kühn^{a,b}, Leonardo Marquezⁿ, Martin Schädler^{a,b}, Vera Tekken^o, Doris Vetterlein^a, Sylvia "Bong" Villareal^d, Catrin Westphal^p, Martin Wiemers^a Received 13 October 2015; accepted 17 October 2015 Available online 3 November 2015 *Corresponding author at: Helmholtz Centre for Environmental Research – UFZ, Community Ecology, Theodor-Lieser-Str. 4, 06120 Halle, Germany. Tel.: +0049 0 345 558 5320; fax: +0049 0 345 558 5329. E-mail address: Josef.Settele@ufz.de (J. Settele). ^aUFZ—Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle, Germany ^biDiv, German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany ^cSustainable Europe Research Institute SERI Germany e.V., Vorsterstr. 97–99, 51103 Cologne, Germany ^dIRRI—International Rice Research Institute, Los Baños, DAPO, 7777 Metro Manila, Philippines ^eInstitute for Natural Resource Conservation, Kiel University, Olshausenstraße 40, 24098 Kiel, Germany ^fLeibniz Centre for Agricultural Landscape Research ZALF, Eberswalder Str. 84, 15374 Müncheberg, Germany ^gLEGATO Office, 3601 Banaue, Ifugao, Philippines ^hMinistry of Agriculture and Rural Development Vietnam, Tien Giang, Vietnam ¹Department of Development Communication, Visayas State University, Visca, Baybay 6521, Leyte, Philippines ¹OLANIS GmbH, Pittlerstraße 33, 04159 Leipzig, Germany ^kTien Giang University, My Tho, Vietnam ¹General and Animal Ecology, Biology, Philipps-University Marburg, Karl-v.-Frisch-Str. 8, 35043 Marburg, Germany ^mChair of Soil Science, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle, Germany ⁿCrop Protection Division, Philippine Rice Research Institute, Maligaya, Munoz, Nueva Ecija, Philippines ^oInstitute for Geography and Geology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 16, 17487 Greifswald, Germany ^pAgorecology, Georg-August University Göttingen, Grisebachstrasse 6, 37077 Göttingen, Germany ^qZhejiang University, Hangzhou, PR China Keywords: Ecological engineering; Landscape structure; Media campaigns; Nutrients; Pest control; Philippines; Pollination; Silicon; Sustainable land use; Vietnam The present special feature of Basic and Applied Ecology focusses on the LEGATO project: "Land-use intensity and Ecological enGineering—Assessment Tools for risks and Opportunities in irrigated rice based production systems" (http://www.legato-project.net/), which aims to advance long-term sustainable development of irrigated rice land-scapes against risks arising from multiple aspects of global change. LEGATO is part of the framework programme 'FONA—Research for Sustainability', a funding scheme of the German Ministry of Education and Science—BMBF (http://www.fona.de/en/index.php). LEGATO quantifies the dependence of the rice-dominated landscapes on ecosystem services (ESS) and the ecosystem functions (ESF) they are generated from. Its focal issues are: (i) the socio-cultural and economic contexts, (ii) local as well as regional land use intensity and biodiversity, and (iii) the potential impacts of future climate and land use change. LEGATO followed the framework of the Millennium Ecosystem Assessment (MA, 2005) by selecting characteristic elements of three MA strands of ecosystem services (ESS) for analysis: (a) Provisioning Services; (b) Regulating Services; and (c) Cultural Services. As a core output, LEGATO develops generally applicable principles of Ecological Engineering (EE). EE is an emerging discipline, concerned with designing, constructing and monitoring of ecosystems, and aims at developing strategies to optimise ecosystem services through exploiting natural regulation mechanisms instead of suppressing them (see also Gurr, Wratten, & Altieri 2003; Mitsch 2012). For detailed field work, seven regions ($15 \times 15 \,\mathrm{km^2}$ each) were chosen, three in Luzon/Philippines (see Fig. 1), three in North Vietnam and one in the Mekong delta in South Vietnam. For their locations and further details on their climates, land-uses and soils see Klotzbücher et al. (2015a). The analysis of soil processes as the basis for rice production is one focal theme of LEGATO research on *provisioning ESS*. Klotzbücher et al. (2015a) investigated the status of plant-available silicon (=Si_{pa}) in all our research regions—which resulted in a surprisingly clearcut differentiation between Vietnam with low, and the Philippines with high Si_{pa} concentrations in topsoil. These differences can be explained by geo-/pedologic conditions. The authors assume that the large Sipa concentrations in Philippine soils are mainly due to a large Sipa input by weathering processes in these areas of volcanic origin during recent geologic history. In some Vietnamese sites, the concentrations of Sipa were below critical values proposed in literature, and a field experiment conducted at one of the sites showed that addition of Si fertilizers indeed did enhance rice production (Marxen et al., 2015). In that article, the LEGATO researchers also demonstrated that rice straw decomposition is an important source of Si_{pa} in paddy soils. Hence, the removal of rice straw from fields, a frequent practice in the Vietnamese study regions, might contribute to the low Sipa concentrations. Water management might also be an important factor for the silicon supply to plants, because irrigation can be a relevant Si_{pa} source (Klotzbücher et al., 2015b). One important source of nutrients is the decomposition of organic materials. Schmidt et al. (2015a) studied invertebrate decomposers and showed that they substantially contributed to the decay of rice straw residues in paddy fields and thus might be an important factor influencing soil fertility and site productivity. Their efficiency was highest near the field borders, indicating a positive effect of surrounding landscapes. Furthermore, crop residue management practices were found to significantly influence decomposition by invertebrates as well as their community structure (Schmidt et al., 2015b). Future studies should evaluate in more detail how land management and landscape structure surrounding rice fields contribute to the maintenance of ecosystem services provided by invertebrate decomposers, such as nutrient cycling and soil fertility. This is also relevant as the Vietnamese government plans to promote the merging of fields and farms into larger units to enhance mechanisation opportunities and compensate for a decline in the farming population. The LEGATO results show that such policies entail the risk of losing nutrient cycling ESS, with a subsequent risk of losses in soil fertility and yield and increasing fertiliser demand. **Regulating ESS** play a key role in irrigated rice ecosystems. Recently in many cases of core pests reaching outbreak levels the lack of natural enemies has played a key role—with the latter being mainly an effect of insecticide applications. ## Download English Version: ## https://daneshyari.com/en/article/4384002 Download Persian Version: https://daneshyari.com/article/4384002 <u>Daneshyari.com</u>