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Structured output prediction is an important machine learning problem both in theory and
practice, and the max-margin Markov network (M3N) is an effective approach. All state-of-
the-art algorithms for optimizing M3N objectives take at least O (1/ε) number of iterations
to find an ε accurate solution. Nesterov [1] broke this barrier by proposing an excessive
gap reduction technique (EGR) which converges in O (1/

√
ε ) iterations. However, it is

restricted to Euclidean projections which consequently requires an intractable amount of
computation for each iteration when applied to solve M3N. In this paper, we show that by
extending EGR to Bregman projection, this faster rate of convergence can be retained, and
more importantly, the updates can be performed efficiently by exploiting graphical model
factorization. Further, we design a kernelized procedure which allows all computations per
iteration to be performed at the same cost as the state-of-the-art approaches.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the supervised learning setting, one is given a training set of labeled data points and the aim is to learn a function
which predicts labels on unseen data points. Sometimes the label space has a rich internal structure which characterizes
the combinatorial or recursive inter-dependencies of the application domain. It is widely believed that capturing these de-
pendencies is critical for effectively learning with structured output. Examples of such problems include sequence labeling,
context free grammar parsing, and word alignment. However, parameter estimation is generally hard even for simple linear
models, because the size of the label space is potentially exponentially large (see e.g. [2]). Therefore it is crucial to exploit
the underlying conditional independence assumptions for the sake of computational tractability. This is often done by defin-
ing a graphical model on the output space, and exploiting the underlying graphical model factorization to perform efficient
computations.

Research in structured prediction can broadly be categorized into two tracks: Optimizing conditional likelihood in an
exponential family results in conditional random fields (CRFs) [3], and a maximum margin approach leads to max-margin
Markov networks (M3Ns) [4]. Unsurprisingly, these two approaches share many commonalities: First, they both minimize
a regularized risk with a square norm regularizer. Second, they assume that there is a joint feature map φ which maps
(x,y) to a feature vector in R

p .1 Third, they assume a label loss �(y,yi;xi) which quantifies the loss of predicting label y
when the correct label of input xi is yi . Finally, they assume that the space of labels Y is endowed with a graphical model
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1 We discuss kernels and associated feature maps into a Reproducing Kernel Hilbert Space (RKHS) in Section 4.3.
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Fig. 1. Illustration of stopping criterion monitored by various algorithms; convergence rates are stated with respect to these stopping criterion. D(α) is the
Lagrange dual of J (w), and minw J (w) = maxα D(α). Neither the primal gap nor the dual gap is actually measurable in practice since minw J (w) (and
maxα D(α)) is unknown. BMRM (right) therefore uses a measurable upper bound of the primal gap. SVM-Struct monitors constraint violation, which can
be also be translated to an upper bound on the primal gap.

Table 1
Comparison of specialized optimization algorithms for training structured prediction models. Primal–dual methods maintain estimation sequences in both
primal and dual spaces. Details of the oracle will be discussed in Section 5. The convergence rate highlights the dependence on both ε and some “constants”
that are often hidden in the O notation: n, λ, and the size of the label space |Y|. The convergence rate of SMO on M3N is derived from [10, Corollary 17],
noting the dual problem (26) is so-called pairable. It enjoys linear convergence O (log 1

ε ) when the dual objective is positive definite (pd), and O ( 1
ε ) when

it is positive semi-definite (psd). The term G in the convergence rate denotes the maximum L2 norm of the features vectors φ(xi ,y). The convergence rate
of extragradient depends on λ in an indirect way.

Optimization algorithm Primal/dual Type of gap Oracle for M3N Convergence rate

CRF M3N

BMRM [5] primal primal gap max O
( 1

λ
log 1

ε

)
O

( G2

λε

)
SVM-Struct [6] primal–dual constraint max n/a O

( G2

λε

)
violation

Extragradient [7] primal–dual duality gap exp n/a O
( log |Y|

ε

)
Exponentiated dual dual gap exp O

( 1
λ

log 1
ε

)
O

( G2 log |Y|
λε

)
gradient [8]

SMO dual dual gap max n/a psd: O
(
n|Y| 1

λε

)
[9, Chapter 6] pd: O

(
n|Y| log 1

ε

)
Our algorithm primal–dual duality gap exp n/a O

(
G
√

log |Y|
λε

)

structure and that φ(x,y) and �(y,yi;xi) factorize according to the cliques of this graphical model. The main difference is
in the loss function employed. CRFs minimize the L2-regularized logistic loss:

J (w) = λ

2
‖w‖2

2 + 1

n

n∑
i=1

log
∑
y∈Y

exp
(
�
(
y,yi;xi) − 〈

w,φ
(
xi,yi) − φ

(
xi,y

)〉)
, (1)

where all log in this paper stands for natural basis. In contrast, the M3Ns minimize the L2-regularized hinge loss

J (w) = λ

2
‖w‖2

2 + 1

n

n∑
i=1

max
y∈Y

{
�
(
y,yi;xi) − 〈

w,φ
(
xi,yi) − φ

(
xi,y

)〉}
. (2)

A large body of literature exists on efficient algorithms for minimizing the above objective functions. A summary of
existing methods, and their convergence rates (iterations needed to find an ε accurate solution) can be found in Table 1. The
ε accuracy of a solution can be measured in many different ways and different algorithms employ different but somewhat
related stopping criterion (see Fig. 1). Some produce iterates wk in the primal space and bound the primal gap J (wk) −
minw J (w). Some solve the dual problem D(α) with iterates αk and bound the dual gap maxα D(α) − D(αk). Some bound
the duality gap J (wk) − D(αk), and still others bound J (wk) − minw Jk(w) where Jk is a uniform lower bound of J . This
must be borne in mind when interpreting the convergence rates in Table 1.

Since (1) is a smooth convex objective, classical methods such as L-BFGS can directly be applied [11]. Specialized solvers
also exist. For instance a primal algorithm based on bundle methods was proposed by [5], while a dual algorithm for
the same problem was proposed by [8]. Both algorithms converge at O ( 1

λ
log(1/ε)) rates to an ε accurate solution, and,

remarkably, their convergence rates are independent of n (the number of data points), and |Y| (the size of the label space).
It is widely believed in optimization (see e.g. Section 9.3 of [12]) that unconstrained smooth strongly convex objective
functions can be minimized in O (log(1/ε)) iterations, and these specialized optimizers also achieve this rate. Although
interior point methods can converge in quadratic rates log(log(1/ε)) which are even faster than O (log(1/ε)), its cost per
step is prohibitively high.
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