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We analyze iterative learning in the limit from positive data with the additional information
provided by a counter. The simplest type of counter provides the current iteration number
(counting up from 0 to infinity), which is known to improve learning power over plain
iterative learning. We introduce five other (weaker) counter types, for example only
providing some unbounded and non-decreasing sequence of numbers. Analyzing these
types allows one to understand which properties of a counter learning can benefit from.
For the iterative setting, we completely characterize the relative power of the learning
criteria corresponding to the counter types. In particular, for our types, the only properties
improving learning power are unboundedness and strict monotonicity. Furthermore, we show
that each of our types of counter improves learning power over weaker ones in some
settings; to this end, we analyze transductive and non-U-shaped learning. Finally we show
that, for iterative learning criteria with one of our types of counter, separations of learning
criteria are necessarily witnessed by classes containing only infinite languages.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We analyze the problem of algorithmically learning a description for a formal language (a computably enumerable sub-
set of the set of natural numbers) when presented successively all and only the elements of that language. For example,
a learner h might be presented with more and more even numbers. After each new number, h may output a description of
a language as its conjecture. The learner h might decide to output a program for the set of all multiples of 4, as long as all
numbers presented are divisible by 4. Later, when h sees an even number not divisible by 4, it might change this guess to
a program for the set of all multiples of 2.

Many criteria for deciding whether a learner h is successful on a language L have been proposed in the literature. Gold,
in his seminal paper [12], gave a first, simple learning criterion, TxtEx-learning,1 where a learner is successful iff, on every
text for L (listing of all and only the elements of L) it eventually stops changing its conjectures, and its final conjecture is a
correct description for the input sequence. Trivially, each single, describable language L has a suitable constant function as
an Ex-learner (this learner constantly outputs a description for L). Thus, we are interested in characterizing for which classes
of languages L is there a single learner h learning each member of L. This framework is known as language learning in the
limit and has been studied extensively, using a wide range of learning criteria similar to TxtEx-learning (see, for example,
the textbook [13]).

In this paper we are concerned with a memory limited variant of TxtEx-learning, namely iterative learning [22,17] (It).
While in TxtEx-learning a learner may arbitrarily access previously presented data points, in iterative learning the learner
only sees its previous conjecture and the latest data point. It is well known that this setting allows one to learn strictly
fewer classes of languages. Further work from the literature analyzed iterative learners with some additional resources, for
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example a bounded example memory [17]; “long term” finite memory states [11]; or feedback learning, i.e. the ability to ask for
the membership of examples in previously seen data [17,5].

A different option for providing additional learning power for iterative learning was suggested in [10], where itera-
tive with counter learning was introduced. In this setting, a learner, in each iteration, has access to its previous conjecture,
the latest datum, and the current iteration number (counting up from 0 to infinity). Case and Moelius [10] show that
this learning criterion is strictly more powerful than plain iterative learning, strictly less powerful than TxtEx-learning,
and incomparable to set-driven learning [21]. In set-driven learning, the learner has access only to the (unordered) set
of data seen so far, with duplicates removed. Consider now a learning criterion, where the learner has access to the
set of data seen so far, just as in set-driven learning, but also to the current iteration number (just as in iterative with
counter learning as introduced in [10]). It is easy to see that this learning criterion is equivalent to partially set-driven
(or rearrangement independent) learning [20]; it is well known that partially set-driven learning is equivalent to TxtEx-
learning.

The main aim of this paper is to discuss how and why such a counter improves learning power. In particular, we want to
understand what properties of a counter can be used in a learning process to increase learning power. Is it the higher and
higher counter values, which we can use to time-bound computations? Is it knowing the number of data items seen so far?
Is it the complete enumeration of all natural numbers which we can use to divide up tasks into infinitely many subtasks to
be executed at the corresponding counter value? We approach these questions by introducing different counter types, each
modeling some of the possibly beneficial properties mentioned above. Formally, a counter type is a set of counters; a counter
is a mapping from the set of natural numbers to itself. Instead of giving the learner the current iteration number, we will
map this number with a counter drawn from the counter type under consideration.

We define the following counter types2:

(i) complete and ordered: Id = {idN}3;
(ii) strictly monotone: �R! = {c | ∀i: c(i + 1) > c(i)};

(iii) monotone & unbounded: �R = {c | ∀i: c(i + 1) � c(i) ∧ lim infi→∞ c(i) = ∞};
(iv) eventually above any number: Rinf=∞ = {c | lim infi→∞ c(i) = ∞};
(v) unbounded: Rsup=∞ = {c | lim supi→∞ c(i) = ∞};

(vi) complete: Ronto = {c | range(c) =N}.

By requiring a learner to succeed regardless of what counter was chosen from the counter type, we can provide certain
beneficial properties of a counter, while not providing others. For example, counters from Ronto provide a complete enumer-
ation of all natural numbers, but do not allow one to infer the number of data items seen so far. We illustrate the inclusion
properties of the different sets of counters with the following diagram (inclusions are top to bottom; thus, inclusions of
learning power when such counters are used are bottom to top).

The symbol ⊥ denotes no use of counter. The weakest type of counter is Rsup=∞ , the unbounded counter. The advantage
over having no counter at all is to be able to make computations with higher and higher time bounds; in fact, it is easy
to see that set-driven learning merely requires a counter from Rsup=∞ to gain the full power of TxtEx-learning. John Case
pointed out that any text for an infinite language implicitly provides a counter from Rsup=∞ .

A somewhat stronger counter type is Rinf=∞; the intuitive advantage of this counter is that a learner will not repeat
mistakes made on small counter values indefinitely, but only the behavior on large counter values affects the learning pro-
cess in the limit. For the monotone counters from �R, the advantage is again that early mistakes are not repeated once
learning has proceeded to a later stage (as in, higher counter value), as well as a monotonicity in advancing through

2 The counter types (i), (iii) and (v) were suggested by John Case in private communication.
3 “Id” stands for identity; N denotes the natural numbers and idN the identity on N.
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