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The well-known parsing algorithm for context-free grammars due to Valiant (1975) [25]
is analyzed and extended to handle the more general Boolean grammars, which are
context-free grammars augmented with conjunction and negation operators in the rules.
The algorithm reduces construction of a parsing table to computing multiple products
of Boolean matrices of various sizes. Its time complexity on an input string of length
n is O (BMM(n) log n), where BMM(n) is the number of operations needed to multiply
two Boolean matrices of size n × n, which is O (nω) with ω < 2.373 as per the current
knowledge. A parse tree can be constructed in time MM(n) logO (1) n (where MM(n) is the
complexity of multiplying two integer matrices), by applying a known efficient procedure
for determining witnesses for Boolean matrix multiplication. The algorithm has a succinct
proof of correctness and is ready to be implemented.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Context-free grammars are the universally accepted mathematical model of syntax, and their status is well justified. On
the one hand, their expressive means are natural, in the sense that whatever they define is intuitively seen as the syntax
of something. On the other hand, they can be implemented in a variety of efficient algorithms, including a straightforward
cubic-time parser, as well as many practical parsing algorithms working much faster in special cases.

The main idea of the context-free grammars is inductive definition of syntactically correct strings. For example, a grammar
S → aSb | ε represents a definition of the following form: a string has the property S if and only if either it is representable
as awb for some string w with the property S , or it is the empty string. Note that the vertical line in the above grammar
is essentially a disjunction of two syntactical conditions. Boolean grammars, introduced by the author [14], are an extension
of the context-free grammars, which maintains the main principle of inductive definition, but allows the use of any Boolean
operations to combine syntactical conditions in the rules. This significantly increases the expressive power of the model [8,7,
13,14]. At the same time, Boolean grammars inherit the basic parsing algorithms from the context-free grammars, including
the Cocke–Kasami–Younger algorithm [14] along with its variant for unambiguous grammars [17], the Generalized LR [15],
as well as the linear-time recursive descent [16]. For more information about Boolean grammars, an interested reader is
directed to a recent survey paper [18].

The straightforward upper bound on the complexity of parsing for Boolean grammars is the same as for ordinary context-
free grammars: that is, O (n3), where n is the length of the input string [14]. However, for ordinary grammars, there also
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exists an asymptotically faster parsing algorithm due to Valiant [25]: this algorithm computes the same parsing table as the
simple Cocke–Kasami–Younger algorithm, but does so by offloading the most intensive computations into calls to a Boolean
matrix multiplication procedure. The latter can be efficiently implemented in a variety of ways. Given two n × n Boolean
matrices, a straightforward calculation of their product uses n3 conjunctions and (n − 1)n2 disjunctions. An improved algo-
rithm by Arlazarov et al. [3] reduces the number of bit operations to O ( n3

log n ), which is achieved by pre-computing products
of all bit vectors of length log n with certain submatrices. Another much more sophisticated combinatorial algorithm for
Boolean matrix multiplication, due to R. Williams [27], operates in time O ( n3

log2 n
). An asymptotically more significant ac-

celeration is obtained by using fast algebraic algorithms for multiplying n × n numerical matrices, such as Strassen’s [24]
algorithm that requires O (n2.81) arithmetical operations, or the method of Coppersmith and Winograd [6], which, with the
recent improvements by V. Vassilevska Williams [26], achieves theoretical running time O (n2.373). These algorithms can be
applied to multiplying n×n Boolean matrices by calculating their product in the ring of residues modulo n+1 [1]. Whatever
method for Boolean matrix multiplication is used in Valiant’s algorithm, as long as matrices are multiplied in time BMM(n),
context-free parsing in time O (BMM(n) log n) is obtained.

Valiant’s result has inspired some further interesting studies. A total rethinking of the algorithm was undertaken by
Rytter [22], who presented its divide-and-conquer approach in terms of parse tree partitions. Benedí and Sánchez [4] im-
plemented the algorithm in the case of stochastic grammars, where Strassen’s matrix multiplication can be applied most
efficiently, and reported a noticeable performance increase. An extension of the algorithm for context-free grammars over
partially computable alphabets was developed by Bertoni et al. [5] and works in time Θ(BMM(nα)), where α � 1 is a
constant determined by the commutativity relation between the symbols. Rajasekaran and Yooseph [21] extended Valiant’s
algorithm to the family of tree-adjoining grammars (which generalize context-free grammars by allowing inner rewriting
of parse trees), and established a recognition algorithm working in time Θ(BMM(n2)), improving over the Θ(n6)-time
direct algorithm. A reverse reduction of parsing to matrix multiplication was first discovered by Satta [23], who demon-
strated that any algorithm for constructing a full parsing table for tree-adjoining grammars in time O (|G|p · nq) leads to
an O (n2p+ q

6 )-time algorithm for Boolean matrix multiplication. Satta’s idea was later applied by Lee [12] to show that
context-free parse table construction in time O (|G|p · nq) similarly implies BMM(n) = O (n2p+ q

3 ).
Taking a closer look at Valiant’s algorithm, one can see that first the entire grammar is encoded in a certain algebraic

structure—basically, a semiring with non-associative multiplication—then the notion of a transitive closure of a Boolean matrix
is extended to matrices over this semiring, so that the desired parsing table could be obtained as a closure of this kind,
and finally it is demonstrated that such a closure can be efficiently computed using Boolean matrix multiplication. This
approach essentially relies on having two operations in a grammar, concatenation and union, which give rise to the product
and the sum in the semiring. Because of that, Valiant’s algorithm in its original presentation cannot be applied to Boolean
grammars.

This paper aims at rewriting Valiant’s algorithm to make it work in the more general case of Boolean grammars. It is
shown that using matrices over a special semiring as an intermediate abstraction is in fact unnecessary, and that matrix
multiplication is actually needed to compute the concatenations only, while Boolean logic can be evaluated separately.
Furthermore, the proposed algorithm maintains one fixed data structure, the parsing table, and whenever the matrix is to
be cut as per Valiant’s divide-and-conquer strategy, the new presentation of the algorithm only distributes the ranges of
positions in the input string among the recursive calls. This leads to an improved version of the algorithm, which, besides
being applicable to a larger family of grammars, is also better understandable than the original Valiant’s algorithm, has a
succinct proof of correctness and is ready to be implemented.

The resulting improved understanding of how exactly a large bulk of concatenations can be represented by Boolean
matrix multiplication has already been used in a recent paper by Okhotin and Reitwießner [20] to obtain a fast recognition
algorithm for input strings over a one-symbol alphabet. That algorithm uses Boolean convolution as the underlying algebraic
problem, and utilizes fast Fourier transform to calculate it efficiently.

Following a brief introduction to Boolean grammars, given in Section 2, this paper sets off by presenting the simple
cubic-time recognition algorithm (Section 3), both in the usual set-theoretic notation and on the level of bit operations.
Next, an alternative order of evaluating the operations in this algorithm is illustrated on a small example, where the cal-
culation of the parsing table for a 5-symbol string can use products of 2 × 2 Boolean matrices. Section 4 presents the
desired algorithm for constructing the parsing table, in which the evaluation of logically independent bits in the pars-
ing table is totally reordered to maximize the use of Boolean matrix products. This yields the known Valiant’s algorithm,
though in the form applicable to Boolean grammars; the algorithm is accompanied with a proof of correctness and an
analysis of complexity. Some simple observations on implementing the algorithm are presented in the following Sec-
tion 5.

The question of constructing a parse tree is handled in Section 6. While the running time is not as issue in the case
of ordinary context-free grammars, where, given a parsing table, a tree can be constructed in time O (n2), in the case of
Boolean grammars, this direct approach leads to cubic time. This question is solved by augmenting the parsing table with
the data on factorizations of substrings, and modifying the main algorithm to construct such a table, with ordinary Boolean
matrix multiplication replaced with the problem of computing integer witnesses for matrix multiplication. Applying the known
algorithm of Alon and Naor [2] for constructing those witnesses in time MM(n) logO (1) n, where MM(n) is the number of
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