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arbitrary distributions. Items are placed in the knapsack sequentially, and the act of placing
an item in the knapsack instantiates its size. In every stage of insertion if the subset of the
items inserted thus far is feasible, then it has a total value that equals to the sum of values

Keywords: of all items of this subset. Otherwise, if the subset violates the constraint, then its value
Knapsack problem equals to zero. The goal is to compute a policy for insertion of the items, that maximizes
Benefit of adaptivity the expected total value of items placed in the knapsack.

We consider both non-adaptive policies (that designate a priori a fixed subset of items to
insert) and adaptive policies (that can make dynamic decisions based on the instantiated
sizes of items placed in the knapsack thus far). Our work characterizes the benefit of
adaptivity. For this purpose we use a measure called the adaptivity gap: the supremum
over instances of the ratio between the expected value obtained by an optimal adaptive
policy and the expected value obtained by an optimal non-adaptive policy. First we show
a tight bound of % on the adaptivity gap for the case of inputs consisting of only
two items. Then we present a non-adaptive policy with expected value that is at least
(v/2 — 1)2/2 ~ 1/11.66 times the expected value of the optimal adaptive policy. Thus
the adaptivity gap in this model is at most 11.66. Additionally this non-adaptive policy
is computed in polynomial time. Finally, we consider a special case of the model where all
sizes are distributed according to Bernoulli distribution with different parameters. For this
special case we improve our result and bound the adaptivity gap by 8.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The DETERMINISTIC KNAPSACK PROBLEM (KP) is a well studied NP-hard problem, where the input consists of a set of n items
characterized by non-negative values v1, ..., v, and non-negative sizes St, ..., Sy, and the goal is to find a maximum-value
subset of these items whose total size is at most one. That is, formally KP is defined as follows

n n
max Zvix,-: ZS,’X,’ <1, x€{0,1}, Vi
i=1 i=1
See [13,11] for surveys of results on the knapsack problem. Despite its theoretical importance, the deterministic knapsack

problem fails to capture many realistic scenarios. In many practical applications, the a priori information regarding item
sizes is stochastic, so a deterministic model does not fit in these cases.
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Stochastic behavior of optimization problems was studied for many problems that are similar to the knapsack problem
(see e.g. [2,14]) and also to the knapsack problem itself (see e.g. [10,15,4,7]). In this work we consider two models defined
as follows.

Definition 1. STocHASTIC KNAPSACK PROBLEM (SKP) [4] is a stochastic variant of KP where for all j, v; is deterministic, while
Sj is a random variable with a known, arbitrary distribution. Moreover, S;’s are mutually independent and the distributions
of distinct items may be different. The goal is to compute a policy that maximizes the expected value of items successfully
placed in the knapsack, where the first overflowing item contributes no value, and stops the process of inserting items into
the knapsack.

Definition 2. BLACKJACK KNAPSACK PROBLEM (BKP) is a stochastic variant of KP where for all j, v; is deterministic, while §;
is a random variable with a known, arbitrary distribution. Moreover, S;’s are mutually independent and the distributions
of distinct items may be different. The goal is to compute a policy that maximizes the expected value of items placed in
the knapsack, where for a given subset of items, its value is the total value of its items if their total size is at most 1, and
otherwise the value of this subset is 0.

The motivation for considering BKP is based on the card game Blackjack (also known as twenty-one). It is a comparing
card game between a player and a dealer, where every card is characterized by some fixed number of points. After receiving
his initial two cards, the player has the option of getting a “hit”, i.e., receiving an additional card(s). The goal of the game
is to reach 21 points or to reach a score higher than a dealer without exceeding 21. If a player is “busting”, i.e., exceeds 21,
then he automatically gains 0 points and thus loses the game. This is the same kind of penalty used in the definition of
BKP.

The policy (in both models) can decide to terminate after any stage. However, in SKP, there is no need to decide to
terminate, since there is no penalty on overflowing the knapsack’s capacity. The policies (in both models) could be adaptive
or non-adaptive. An adaptive policy can use the instantiated values of the stochastic information revealed by the policy thus
far. A non-adaptive policy does not use this kind of information, and thus in SKP a non-adaptive policy is a permutation of
(perhaps a subset of) the items and in BKP it is a subset of items. Note that the characteristics of non-adaptive policies are
similar to the ones of general policies in static models (see e.g. [17,16,5]).

The implementation of adaptive policies is much more difficult than the implementation of non-adaptive policies, as for
example the memory that is needed to encode an adaptive policy need not be finite. Thus, the restriction to non-adaptive
policies is useful, and the goal of this work is to examine the extent to which the performance of the system deteriorates due
to this constraint. Therefore, we consider the benefit of adaptivity [4]. For this purpose we examine a measure, called the
adaptivity gap, defined as the supremum ratio between the expected value of an optimal adaptive policy and the expected
value of an optimal non-adaptive policy, where the supremum is over all possible instances in our model. Note that by
definition, in every instance of SKP or BKP there is an optimal non-adaptive policy (the set of feasible policies is finite in
each of these cases), but there might be instances for which there is no optimal adaptive policy. In the sequel, we assume
that there is an optimal adaptive policy (that is the supremum is attained by some adaptive policy). However, if this is not
the case, we can replace an optimal adaptive policy by an adaptive policy whose expected value is close to the optimal
value (up to an additive error of infinitesimally small value of ¢). This does not change our results, and thus we prefer to
keep the presentation for the case in which the supremum is attained.

Notation. Given an event C, we denote by P(C) the probability of C. For a random variable X, we let E(X) be its expected
value (also called its expectation). For a policy PP for BKP, we denote by val(P) the value of the subset of items selected by
policy P (the value as a solution to BKP).

Related work. The study of the benefit of adaptivity in stochastic combinatorial optimization problems started with the
seminal work by Dean, Goemans and Vondrak [4]. In this work, the authors consider the SKP. They show that the adaptivity
gap in this model is at most 4. More precisely, they construct a non-adaptive policy which approximates the optimal
adaptive policy by a factor of 4.

Let w; = v;- P(S; < 1) be the effective value of item i, ; = E(min{S;, 1}) be the mean truncated size of item i. An in-
ferior % bound on the adaptivity gap for SKP is achieved by [4] based on a linear program ¢ that allows to bound ADAPT,

the expected value of the optimal adaptive policy in SKP. We will use the following result (Theorem 3.1 in [4]).
Theorem 3. ADAPT < @ (2), where @ (t) = max{d i, Wix;, s.t. Y 1 LiXi <¢t, x; €[0, 1], Vi}.

A generalization of SKP was presented by Gupta et al. [9] where both sizes and values are random and the assumption
of independence between sizes and values of every item is omitted. Using a new linear programming formulation, they
construct a non-adaptive policy that in expectation achieves at least % of the expected value achieved by an optimal adaptive
policy. Thus, the adaptivity gap in their model is at most 8.
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