Note

Edge coloring of planar graphs which any two short cycles are adjacent at most once

Wei-Ping $\mathrm{Ni}^{\mathrm{a}, *}$, Jian-Liang $\mathrm{Wu}^{\mathrm{b}, 1}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Zaozhuang University, Shandong, 277160, PR China
b School of Mathematics, Shandong University, Jinan, 250100, PR China

ARTICLE INFO

Article history:

Received 24 January 2013
Received in revised form 6 November 2013
Accepted 12 November 2013
Communicated by D.-Z. Du

Keywords:

Planar graph
Edge coloring
Maximum degree
Cycle

Abstract

By applying discharging methods and properties of critical graphs, we proved that every simple planar graph G is of class 1 if $\Delta(G)=6$ and any k-cycle is adjacent to at most one k-cycle for some $k(k=3,4,5)$.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow [1] for the terminologies and notations not defined here. Let G be a graph. We use $V(G), E(G), \Delta(G)$ and $\delta(G)$ (or simply V, E, Δ and δ) to denote the vertex set, the edge set, the maximum degree and the minimum degree of G, respectively. For a vertex $v \in V$, let $N(v)$ denote the set of vertices adjacent to v, and let $d(v)=|N(v)|$ denote the degree of v. If a graph G can be drawn in the plane so that each pair of edges intersects only at their ends, it is said to be a planar graph. For a plane graph G, we denote its face set by $F(G)$, and for a face $f \in F(G)$, the degree $d(f)$ of a face f is the number of edges incident with it, where each cut-edge is counted twice. A k-, k^{+}-vertex (or face) is a vertex (or face) of degree k, at least k. A k (or k^{+})-vertex adjacent to a vertex x is called a $k\left(\right.$ or $\left.k^{+}\right)$-neighbor of x. A k-cycle is a cycle of length k. Two cycles sharing a common edge are said to be adjacent. Given a cycle C of length k in G, an edge $x y \in E(G) \backslash E(C)$ is called a chord of C if $x, y \in V(C)$. Such a cycle C is also called a chordal-k-cycle.

An edge k-coloring of a graph G is a function $\phi: E(G) \rightarrow\{1,2, \ldots, k\}$ such that any two adjacent edges $e_{1}, e_{2} \in E(G)$ have $\phi\left(e_{1}\right) \neq \phi\left(e_{2}\right)$. The chromatic index $\chi^{\prime}(G)$ is the smallest integer k such that G admits an edge k-coloring. A graph G is of class 1 if $\chi^{\prime}(G)=\Delta$ and of class 2 if $\chi^{\prime}(G)=\Delta+1$, A critical graph G is a connected graph such that G is of class 2 and $\chi^{\prime}(G-e)<\chi^{\prime}(G)$ for each edge $e \in E(G)$. A critical graph of maximum degree Δ is called a Δ-critical graph. It is obvious that every Δ-critical graph ($\Delta \geqslant 2$) is 2-connected.

Vizing [2] first presented examples of planar graph of class 2 for each $\Delta \in\{2,3,4,5\}$ showed that every planar graph with $\Delta \geqslant 8$ is of class 1 and conjectured that the conclusion holds for $6 \leqslant \Delta \leqslant 7$. The case $\Delta=7$ was confirmed by Sanders and Zhao [3], and Zhang [4] independently. Thus, Vizing's conjecture remains open only for the case $\Delta=6$. The girth of a

[^0]graph G is defined to be the length of a shortest cycle in G. Li and Luo [5] proved that a planar graph G with maximum degree Δ and girth g is of class 1 if it satisfies one of the following conditions: (1) $\Delta \geqslant 3$ and $g \geqslant 8$ (2) $\Delta \geqslant 4$ and $g \geqslant 5$ (3) $\Delta \geqslant 5$ and $g \geqslant 4$ (4) $\Delta \geqslant 8$ and $g \geqslant 3$. Zhou [6] proved that every planar graph with $\Delta=6$ having no k-cycle for some $k \in\{3,4,5\}$ is of class 1 . Bu and Wang [7] proved that if G does not either a 6 -cycle, or a 4 -cycle with a chord, or a 5and 6 -cycle with a chord, then G is of class 1 . The result was further extended by Wang and Chen [8] to a planar graph G with $\Delta=6$ without chordal 5 -cycle. Recently, $\mathrm{Ni}[9,10$] proved every simple planar graph with $\Delta=6$ is of class 1 , if it satisfies one of the following conditions: (1) any two k-cycles are not adjacent for some $k(k=3,4,5)$, (2) a planar graph does not contain chordal-7-cycles. For planar graph G with $\Delta=5$, Chen and Wang [11] proved that the planar graph G without intersecting triangles is of class 1 . Wu [12] proved that if G does not contain a 4 -cycle, or a 5 -cycle, then G is of class 1 . Ni $[13,14]$ proved the planar graph G is of class 1 , if any 3 -cycle is not adjacent to a k-cycle for some $k \in\{4,5\}$, or any 4 -cycle is not adjacent to a 5 -cycle. In this paper, we proved that every simple planar graph with $\Delta=6$ is of class 1 , if any k-cycle is adjacent to at most one k-cycle for some $k(k=3,4,5)$.

2. Main result and its proof

First, we give some Lemmas.

Lemma 1. (See [2].) Let G be a Δ-critical graph and $\Delta \geqslant 3$. Then
(1) any vertex of G is adjacent to at most one 2-vertex, and at least two Δ-vertices,
(2) if $u v \in E(G)$ with $d(u)=k$, where $k \neq \Delta$, then $d(u)+d(v) \geqslant \Delta+2$, and v is adjacent to at least $\Delta-k+1 \Delta$-vertices.

Lemma 2. (See [1].) Let G be a Δ-critical graph. If $x y \in E(G)$ and $d(x)+d(y)=\Delta+2$, then
(1) any $v \in N(\{x, y\}) \backslash\{x, y\}$ is Δ-vertex,
(2) any $v \in N(N(\{x, y\})) \backslash\{x, y\}$ satisfies $d(v) \geqslant \Delta-1$, and
(3) if $d(x)<\Delta, d(y)<\Delta$, then any $v \in N(N(\{x, y\})) \backslash\{x, y\}$ is Δ-vertex.

Lemma 3. (See [3].) If a graph G has distinct vertices x, y, z such that (1) $x y \in E(G), x z \in E(G), d(z)<2 \Delta-d(x)-d(y)+2$, and (2) $x z$ is in at least $d(x)+d(y)-\Delta-2$ triangles not containing y, then G is not a critical graph.

Then, we began to prove the main result of the paper.

Theorem 1. If G is a planar graph with $\Delta=6$ such that any s-cycle is adjacent to at most one s-cycle for some $s(s=3,4,5)$, then G is of class 1 .

Proof. Suppose on the contrary that G is of Class 2 . Without loss of generality, we may assume that G is 6 -critical. Since G is a planar graph, by Euler's formula, we have

$$
\sum_{x \in V(G)}(d(x)-4)+\sum_{x \in F(G)}(d(x)-4)=-8<0
$$

We define $c h$ to be the initial charge. Let $\operatorname{ch}(x)=d(x)-4$ for each $x \in V \cup F$. So $\sum_{x \in V \cup F} \operatorname{ch}(x)<0$. In the following, we will reassign a new charge denoted by $c h^{\prime}(x)$ to each $x \in V \cup F$ according to the discharging rules. Since our rules only move charges around, and do not affect the sum. If we can show that $c h^{\prime}(x) \geqslant 0$ for each $x \in V \cup F$, then we get an obvious contradiction $0 \leqslant \sum_{x \in V \cup F} c h^{\prime}(x)=\sum_{x \in V \cup F} \operatorname{ch}(x)<0$. which completes our proof.

Let $d_{r}(v)$ denote the number of r-neighbors of $v(r=2,3,4,5,6)$, and $f_{3}(v)$ the number of 3 -faces incident with v.

Case 1. $s=3$, that is, every 3 -cycle is adjacent to at most one 3-cycle.
The discharging rules are defined as follows.
R11 Let v be a 6 -vertex.
R11-1 v sends 1 to its adjacent 2-vertex, sends $\frac{1}{3}$ to each of its adjacent 3 -vertices, sends $\frac{2}{9}$ to each of its adjacent 4 -vertices, sends $\frac{1}{9}$ to each of its adjacent 5 -vertices.

R11-2 If v is adjacent to a 5 -vertex y and y is incident with a $(3,5,6)$-face f, but v is not incident with f, then v sends $\frac{5}{54}$ by y to the 6 -vertex incident with f.

R11-3 If v is adjacent to a 6-vertex u and u is incident with a (2,6,6)-face f, but v is not incident with f, then v sends $\frac{1}{8}$ to u.

R11-4 If v is incident with a $(3,6,6)$-face $[u, v, w]$ such that $d(u)=3$ and $u w$ is incident with two $(3,6,6)$-faces, then v sends $\frac{1}{18}$ to w.

https://daneshyari.com/en/article/438446

Download Persian Version:

https://daneshyari.com/article/438446

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: niweipingdd@126.com (W.-P. Ni).
 1 This work was partially supported by NNSF of China (No. 10271006) and of Shandong (No. ZR2012AL08).

