

Theoretical Computer Science 382 (2007) 139–150

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the dualization of hypergraphs with bounded edge-intersections and other related classes of hypergraphs*

Leonid Khachiyan^{a,#}, Endre Boros^{b,*}, Khaled Elbassioni^c, Vladimir Gurvich^b

Department of Computer Science, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8003, United States
RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ 08854-8003, United States
Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract

Given a finite set V, and integers $k \ge 1$ and $r \ge 0$, let us denote by $\mathbb{A}(k,r)$ the class of hypergraphs $\mathcal{A} \subseteq 2^V$ with (k,r)-bounded intersections, i.e. in which the intersection of any k distinct hyperedges has size at most r. We consider the problem MIS $(\mathcal{A}, \mathcal{I})$: given a hypergraph \mathcal{A} , and a subfamily $\mathcal{I} \subseteq \mathcal{I}(\mathcal{A})$ of its maximal independent sets (MIS) $\mathcal{I}(\mathcal{A})$, either extend this subfamily by constructing a new MIS $I \in \mathcal{I}(\mathcal{A}) \setminus \mathcal{I}$ or prove that there are no more MIS, that is $\mathcal{I} = \mathcal{I}(\mathcal{A})$. It is known that, for hypergraphs of bounded dimension $\mathbb{A}(1,\delta)$, as well as for hypergraphs of bounded degree $\mathbb{A}(\delta,0)$ (where δ is a constant), problem MIS $(\mathcal{A},\mathcal{I})$ can be solved in incremental polynomial time. In this paper, we extend this result to any integers k,r such that $k+r=\delta$ is a constant. More precisely, we show that for hypergraphs $\mathcal{A}\in\mathbb{A}(k,r)$ with $k+r\leq \infty$ const, problem MIS $(\mathcal{A},\mathcal{I})$ is NC-reducible to the problem MIS (\mathcal{A}',\emptyset) of generating a single MIS for a partial subhypergraph \mathcal{A}' of \mathcal{A} . In particular, this implies that MIS $(\mathcal{A},\mathcal{I})$ is polynomial, and we get an incremental polynomial algorithm for generating all MIS. Furthermore, combining this result with the currently known algorithms for finding a single maximally independent set of a hypergraph, we obtain efficient parallel algorithms for incrementally generating all MIS for hypergraphs in the classes $\mathbb{A}(1,\delta)$, $\mathbb{A}(\delta,0)$, and $\mathbb{A}(2,1)$, where δ is a constant. We also show that, for $\mathcal{A} \in \mathbb{A}(k,r)$, where $k+r \le \infty$, the problem of generating all MIS of \mathcal{A} can be solved in incremental polynomial-time and with space polynomial only in the size of \mathcal{A} .

Keywords: Bounded degree; Bounded dimension; Conformal hypergraph; Dualization; Incremental generating; Maximal independent set; Minimal transversal; Polynomial space

1. Introduction

Let $\mathcal{A}\subseteq 2^V$ be a hypergraph (set family) on a finite vertex set V. A vertex set $I\subseteq V$ is called *independent* if I contains no hyperedge of \mathcal{A} . Let $\mathcal{I}(\mathcal{A})\subseteq 2^V$ denote the family of all maximal independent sets (MIS) of \mathcal{A} .

This research was supported in part by the National Science Foundation, grant IIS-0118635. The research of the second and fourth authors was also supported in part by the Office of Naval Research, grant N00014-92-J-1375. The authors are also grateful for partial support by DIMACS, the National Science Foundation's Center for Discrete Mathematics and Theoretical Computer Science.

^{*} Corresponding author.

E-mail addresses: boros@rutcor.rutgers.edu (E. Boros), elbassio@mpi-sb.mpg.de (K. Elbassioni), gurvich@rutcor.rutgers.edu (V. Gurvich).

³⁶ Our friend and co-author, Leonid Khachiyan passed away with tragic suddenness, while we were working on the final version of this paper.

We assume that A is given by the list of its hyperedges, and consider the problem GEN-MIS(A) of incrementally generating all sets in $\mathcal{I}(A)$:

GEN-MIS(A): Given a hypergraph A, generate all maximal independent sets of A.

Clearly, this problem can be solved by performing $|\mathcal{I}(\mathcal{A})| + 1$ calls to the following problem:

 $MIS(A, \mathcal{I})$: Given a hypergraph A and a collection $\mathcal{I} \subseteq \mathcal{I}(A)$ of its maximal independent sets, either find a new maximal independent set $I \in \mathcal{I}(A) \setminus \mathcal{I}$, or prove that the given collection is complete, $\mathcal{I} = \mathcal{I}(A)$.

Note that if $I \in \mathcal{I}(\mathcal{A})$ is an independent set, the complement $B = V \setminus I$ is a *transversal* to \mathcal{A} ; that is, $B \cap A \neq \emptyset$ for all $A \in \mathcal{A}$, and vice versa. Hence $\{B \mid B = V \setminus I, \ I \in \mathcal{I}(\mathcal{A})\} = \mathcal{A}^d$, where

$$\mathcal{A}^d \stackrel{\text{def}}{=} \{B \mid B \text{ is a minimal transversal to } \mathcal{A}\}$$

is the *transversal* or *dual* hypergraph of \mathcal{A} . For this reason, the problems GEN-MIS(\mathcal{A}) and MIS(\mathcal{A}) can be equivalently stated as the following *hypergraph dualization problems*:

GEN-DUAL(A): Given a hypergraph A, generate all minimal transversals of A.

DUAL(A, B): Given a hypergraph A and a collection $B \subseteq A^d$ of minimal transversals to A, either find a new minimal transversal $B \in A \setminus B$ or show that B = A.

These problems have applications in combinatorics, graph theory, artificial intelligence, game theory [18,19,26], reliability theory, database theory, integer programming, and learning theory (see, e.g. [5,11]). It is an open question as to whether the problem DUAL(\mathcal{A} , \mathcal{B}), or equivalently MIS(\mathcal{A} , \mathcal{I}), can be solved in polynomial time for arbitrary hypergraphs. The fastest currently known algorithm [14] for DUAL(\mathcal{A} , \mathcal{B}) is quasi-polynomial and runs in time $O(nm) + m^{o(\log m)}$, where n = |V| and $m = |\mathcal{A}| + |\mathcal{B}|$. The fastest known randomized parallel algorithm [22], for problem MIS(\mathcal{A} , \mathcal{B}) of computing a single MIS of a hypergraph \mathcal{A} on n vertices, runs in time $O(\sqrt{n})$ on $n^{3/2}$ processors.

It was shown in [6,11] that in the case of hypergraphs of bounded dimension,

$$\dim(\mathcal{A}) \stackrel{\text{def}}{=} \max_{A \in \mathcal{A}} |A| \le \text{const.}$$
 (1)

problem $MIS(\mathcal{A}, \mathcal{I})$ can be solved in polynomial time. Moreover, [4] shows that the problem can be efficiently solved in parallel, $MIS(\mathcal{A}, \mathcal{I}) \in NC$ for $\dim(\mathcal{A}) \leq 3$ and $MIS(\mathcal{A}, \mathcal{I}) \in RNC$ for $\dim(\mathcal{A}) = 4, 5...$ Let us also mention that for graphs, $\dim(\mathcal{A}) \leq 2$, all MIS can be generated with polynomial delay, see [20] and also [29].

In [10], a total polynomial time generation algorithm was obtained for hypergraphs of bounded degree,

$$\deg(\mathcal{A}) \stackrel{\text{def}}{=} \max_{v \in V} |\{A : v \in A \in \mathcal{A}\}| \le \text{const.}$$
 (2)

This result was recently strengthened in [12], where a polynomial delay algorithm was obtained for a wider class of hypergraphs.

In this paper, we consider the class $\mathbb{A}(k,r)$ of hypergraphs with (k,r)-bounded intersections: $\mathcal{A} \in \mathbb{A}(k,r)$ if the intersection of each (at least) k distinct hyperedges of \mathcal{A} is of cardinality at most r. We will always assume that $k \geq 1$ and $r \geq 0$ are fixed integers whose sum is bounded, $k + r \leq \delta = \text{const.}$ Note that

$$\dim(\mathcal{A}) < r$$
 iff $\mathcal{A} \in \mathbb{A}(1,r)$ and $\deg(\mathcal{A}) < k$ iff $\mathcal{A} \in \mathbb{A}(k,0)$,

and hence the class $\mathbb{A}(k,r)$ contains both the bounded-dimension and bounded-degree hypergraphs as subclasses.

It will be shown that problem MIS(\mathcal{A}, \mathcal{I}) can be solved in polynomial time for hypergraphs with (k, r)-bounded intersections. It is not difficult to see that for any hypergraph $\mathcal{A} \in \mathbb{A}(k, r)$, the following property holds for every vertex-set $X \subseteq V$ (see Lemma 1 below): X is contained in a hyperedge of \mathcal{A} whenever each subset of X of cardinality at most $\delta = k + r$ is contained in a hyperedge of \mathcal{A} . Hypergraphs $\mathcal{A} \subseteq 2^V$ with this property were introduced by Berge [3] under the name of δ -conformal hypergraphs, and clearly define a wider class of hypergraphs than $\mathbb{A}(k, r)$ with $k + r = \delta$. In fact, we will prove our results for this wider class of δ -conformal hypergraphs.

Theorem 1. For the δ -conformal hypergraphs, $\delta \leq const$, and in particular for $A \in \mathbb{A}(k, r)$, $k + r \leq \delta = const$, problem $MIS(A, \mathcal{I})$ can be solved in polynomial time. Hence $\mathcal{I}(A)$, the set all MIS of A, can be generated in incremental polynomial time.

Download English Version:

https://daneshyari.com/en/article/438495

Download Persian Version:

https://daneshyari.com/article/438495

<u>Daneshyari.com</u>