Designer ecosystems: A solution for the conservation-exploitation dilemma

Ashutosh Awasthia,*,1, Kripal Singhb,c,*,1, Audrey O’Gradyd, Ronan Courtneyd,e, Alok Kalrab, Rana Pratap Sinha, Artemi Cerdáf,g, Yosef Steinbergerb, D.D. Patrab

a Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
b CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
c Society for Ecosystem Management, 87, Laxmanpur, Indiranagar, Lucknow 226016, Uttar Pradesh, India
d Department of Life Sciences, University of Limerick, Limerick, Ireland
e Materials and Surface Science Institute (MSSI), University of Limerick, Ireland
f Department of Geography, University of Valencia, Blasco Ibáñez, 28, Valencia 46010, Spain

g Soil Physics and Land Management Group, Wageningen University, Droevendaalsesteeg 4, 6708PB Wageningen, The Netherlands
h The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel

ARTICLE INFO
Article history:
Received 10 March 2015
Received in revised form 3 March 2016
Accepted 1 May 2016
Available online 19 May 2016

Keywords:
Biodiversity
Ecology
Restoration
Conservation
Sustainability
Community
Exotic invasion

ABSTRACT
Increase in human population is accelerating the rate of land use change, biodiversity loss and habitat degradation, triggering a serious threat to life supporting ecosystem services. Existing strategies for biological conservation remain insufficient to achieve a sustainable human-nature relationship and this situation has fueled a debate on the conservation-exploitation dilemma. We need to devise novel strategies, in a mutually inclusive way, which can support biological conservation and secure economic development of deprived populations. Here we propose the use of designer ecosystems which can ensure ecological sustainability while providing ample and some new means of livelihood to local people. Such designer ecosystems may provide a solution to the conservation-exploitation dilemma through lessening population pressure on conserved ecosystems and remediating environmental pollution and ecosystem degradation to secure a broad range of ecosystem services of economic and cultural values.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction
Regardless of the consequent deterioration of natural ecosystems, increasing population pressure will likely accelerate the processes of industrialization and agricultural intensification. Many ecosystems around the world have lost their original structures and functions and developed novel properties, frequently described as novel ecosystems (Hobbs et al., 2009). Both, conservation of invaluable biodiversity and utilization of ecosystem services for economic development, are essential but their accommodation in a common agenda is still under debate (Doak et al., 2014). We suggest shifting anthropogenic activities from a focus on nature reserves into wisely developed multifunctional Designer Ecosystems (DEs) on marginal lands outside of protected areas. DEs may remediate harmful dis-services and externalities of anthropogenic activities like environmental pollution, habitat change and lessen the reliance of local populations on conserved ecosystems through providing a broad range of ecosystem services of economic and cultural value. In this way, the dilemma of biodiversity conservation and extraction of ecosystem services may be solved through spatial separation of both types of activities.

2. The conservation-exploitation dilemma
Potentially irreversible changes in natural ecosystems such as biodiversity loss and habitat homogenization are serious threats to important life sustaining ecosystem processes. Natural ecosystems preserve outstanding wealth of genetic resources, tuned through continuous evolutionary forces, which may work as insurance policies for future improvements in our sustenance and well-being. Traditional conservation strategies remain insufficient and most ecosystems are experiencing substantial loss in their original diversity. The new conservation strategies based on ecosystem ser-
vices of biodiversity are easily grasped and widely supported by economists and politicians (Goldman et al., 2008). However, such strategies will accelerate management of nature for exploiting a few provisioning and cultural services, largely ignoring non-valued regulating and supporting ones. Our evolutionary shortsightedness and competitive instincts are exploited by electoral and commercial allurements and drive relatively more exploitation than investment in conservation (Penn, 2003).

Anthropogenic interference like agriculture, commercial forestry, environmental pollution, exotic invasions and climate change have become an integral part of most ecosystems which have lost their original ecological identity (Fig. 1). The intensity of these activities is going to be higher in time as a result of increasing population and decreasing land availability. Establishment of functional biodiversity for ecosystem services in these degraded ecosystems is the major objective of traditional ecological restoration (Suding, 2011). However, some workers have advocated that instead of struggling for the restoration of historical biodiversity, these ecosystems should be developed into multifunctional ecosystems that are well adapted to anthropogenic pressures and deliver multiple ecosystem services (Hobbs et al., 2009). If properly developed, these ecosystems may ensure sustainable delivery of biodiversity-based ecosystem services (Palmer et al., 2004; Montoya et al., 2012) and ease exploitation pressure on conserved habitats. We suggest that the wealth of multidisciplinary knowledge spanning ecology, economics and social science should be employed in the development of degraded lands in management-friendly ecosystems. These ecosystems will work as buffer zones between patches of conservation and intensive anthropogenic activities. In this way such ecosystems may accommodate further essential agricultural intensification and industrialization, because they will be able to remediate several externalities such as environmental pollution and land degradation. They will fulfill local ecological and economic demands reducing intact natural ecosystems’ exposure to disturbance.

3. Introducing designer ecosystems

Here we define the designer ecosystems (DEs) which are intentionally created or managed through inclusion of selected species combinations for sustainable use of various ecosystem services. DEs should be developed outside of protected areas on slightly degraded ecosystems or created de novo on natural and management-driven barren lands like those set aside after mining, agriculture (Fig. 1) and hydroelectric projects, beside railway tracks, highways, riverbanks and industrial areas. Frequent floods and riverine erosion pose ecological and economic threats; development of perennial diversity rich plantations along riverbanks may support the livelihood of flood affected marginal farmers. Temporary and degraded wetlands should be managed for biomass, timber, fishing etc. Similarly, DEs in urban areas may support cultural activities and bioremidiation of air, soil and water. Biodiversity enhances the amplitude and stability in ecosystem functioning and makes ecosystems more resistant to exotic invasions and abiotic disturbances (Fargione and Tilman 2005). Therefore, as much as possible, these ecosystems should be rich in biodiversity with emphasis on ecologically and economically appropriate biotic material e.g. timber and bioenergy crops. These ecosystems should be tolerant to persistent human disturbance and provide a package of ecosystem services such as soil reclamation, bioremidiation, and bioenergy production which are being provided by historical biodiversity in conserved ecosystems.

Naturally, biotic communities develop from the historical regional species pool that is adapted to the local biotic and abiotic environment (HilleRisLambers et al., 2012). Desired biodiversity can be created in DEs through managing abiotic factors like water, fertilization and selection of appropriate biotic material through assisted migration (Marris, 2011); instead of relying only on the regional species pool. Besides, habitat heterogeneity, disturbance and the sequence of species immigration also affect the community assembly (Fukami and Morin 2003). Introduction of invasive plants, which otherwise provide important services, may also be considered in the later stages of the development of DEs. Non-native species included in the community after the native community has been established through restoration approaches were found to be substantially less invasive (Martin and Wilsey, 2012). Understanding the roles of these factors requires exploration of numerous combinations of biotic and abiotic factors and monitoring ecosystem function and human well-being until we obtain the desired diversity with the desired services. Government can support this concept through ‘pay for ecosystem services’ schemes (Naeem et al., 2015) to promote the participation of local people for sustainable management and extraction of ecosystem services ensuring biological conservation. This will further enhance the climate change adaptability and ecological resilience of whole landscape (Hobbs et al., 2014).

4. Ensuring ecological and economic sustainability through designer ecosystems

Sustainability of designer ecosystems will depend on two strict conditions. First, DEs should contribute to the economic well-being of local people through delivering important provisioning and cultural services and second, they should provide more regulating
دانلود مقاله

http://daneshyari.com/article/4388714