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a b s t r a c t

Given an edge-weighted (di)graph and a list of source–sink pairs of vertices of this graph,
the minimum multicut problem consists in selecting a minimum-weight set of edges (or
arcs), whose removal leaves no path from each source to the corresponding sink. This is
a well-known N P -hard problem, and improving several previous results, we show that
it remains APX-hard in unweighted directed acyclic graphs (DAG), even with only two
source–sink pairs. This is also true if we remove vertices instead of arcs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the minimum multicut problem (MinMC), which is a classical problem in graph theory and
combinatorial optimization [9].

Assume that we are given an n-vertex m-edge (di)graph G = (V , E), a weight function w : E → N∗ and a list N of pairs
(source si, sink s′i) of terminal vertices of G. A multicut is a set of edges (or arcs) of G, whose removal leaves no (directed)
path from si to s′i for each i. The weight of a multicut is the sum of the weights of its edges (or arcs). MinMC consists in
computing a minimum-weight multicut. The graph G is unweighted if w(e) = 1 for each edge (or arc) e ∈ E. The minimum
multiterminal cut problem (MinMTC) is a particularminimummulticut problem inwhich, given a set of r vertices {t1, . . . , tr},
the source–sink pairs are (ti, tj) for i ≠ j.

We also need to introduce some notions from approximation theory: given aminimization (resp.maximization) problem
Π and a real α ≥ 1, an α-approximation algorithm for Π is an algorithm that runs in polynomial time and outputs a feasible
solution whose value is at most α times the value of an optimal solution for Π (resp. whose value multiplied by α is at least
the value of an optimal solution for Π ). A polynomial-time approximation scheme (PTAS) is an algorithm that, for any given
ϵ > 0, is an (1 + ϵ)-approximation algorithm. A problem is APX-hard iff it does not admit a PTAS unless P = N P . A
problem is APX-complete if it is APX-hard and admits an α-approximation algorithm for some fixed real α ≥ 1.

For |N | = 1,MinMC is equivalent to theminimumcut problem, and therefore is polynomial-time solvable both in directed
and in undirected graphs [9]. For the same reason, MinMTC is polynomial-time solvable in undirected graphs when r = 2.
However, MinMTC becomes N P -hard, and even APX-hard, as soon as r = 3 in undirected graphs [10], and as soon as
r = 2 in digraphs [14]. As a consequence, MinMC is APX-hard in digraphs for each fixed |N | ≥ 2, and in undirected
graphs for each fixed |N | ≥ 3 (the case |N | = 2 being polynomial-time solvable [23]). For an arbitrary number of source–
sink pairs, MinMC is APX-hard even in unweighted stars [13]. Moreover, MinMC is polynomial-time solvable in directed
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trees (the constraint matrix being totally unimodular in this case) and MinMTC is polynomial-time solvable in directed
acyclic graphs (DAGs) [2,9]. (Recall that a circuit of a digraph is a directed cycle, i.e., a directed path where all arcs share the
same orientation andwhose endpoints coincide, and that a directed acyclic graph is a digraphwithout circuits.) Finally, there
is a polynomial-time approximation scheme (PTAS) for MinMC in unweighted graphs of bounded tree-width and bounded
degree, but dropping any of these three assumptions leads to APX-hardness (instead of N P -hardness only) [6]. This PTAS
also holds for a variant ofMinMC in digraphs, calledMinMC-SC, where the goal is to remove a minimum-weight set of arcs
so that, for each i, no directed cycle (circuit) contains both si and s′i .

A related problem is the well-known maximum multicommodity flow problem (MaxMF): indeed, these problems can
be modeled by linear programs (LP), whose continuous relaxations are dual [9]. Hence, the optimal value of MaxMF
is smaller than or equal to the one of MinMC, and the optimal values of their continuous relaxations are equal.
However, unlike MinMC, MaxMF is N P -hard in undirected graphs when |N | = 2 [12]. Note that, for both problems,
the (general) directed case is harder than the undirected case: indeed, given an undirected instance, one can obtain
an equivalent directed instance by replacing each edge (u, v) of weight w(u, v) by a gadget consisting of five arcs
(u, wuv), (v,wuv), (w

′
uv, u), (w

′
uv, v), (wuv, w

′
uv) of weight w(u, v), where wuv and w′uv are two new vertices.

Some properties forMinMC are given in [16], where the authors conjecture that this problem is not significantly simpler
in directed acyclic graphs. In [3], it was proved thatMinMC isN P -hard even in unweighted directed acyclic graphs having a
very special structure (namely, the underlying undirected graph is a bipartite cactus of boundedpath-width andofmaximum
degree three), and APX-hard in unweighted digraphs of bounded maximum degree and bounded directed tree-width
(see [20] for a definition). Moreover, for fixed |N |, an algorithm solving MinMC in polynomial time in a class of DAGs was
presented. However, for fixed |N |, the complexity ofMinMC in general DAGs is still open, while the related problemMaxMF
is known to be N P -hard for a long time [12].

In this paper, we show that this problem is APX-hard, even if |N | = 2. Before proving this result in Section 3, we first
consider MaxMF and give in Section 2 a construction generalizing the one described in [19]: we show that the integrality
gap for MaxMF can be arbitrarily close to 2 in DAGs with |N | = 2, and that, for any integer p > 1, there exist instances of
size polynomial in p such that the minimum value of a fractional multicut (and hence the maximum value of a fractional
multiflow) in these graphs is equal to a multiple of 1/p. Finally, we give in Section 4 a second reduction, that is valid only
for |N | ≥ 3, but in which all the non-terminal vertices have maximum degree three and all the arcs have weight 1.

2. An infinite family of instances forMaxMF

The continuous relaxation ofMinMC consists in labeling each arc e ∈ Ewith a value x(e), whileminimizing
∑

e∈E w(e)x(e)
and ensuring that, for each i and for each path pj from si to s′i , we have

∑
e∈pj

x(e) ≥ 1. MaxMF consists in routing the
maximum number of flow units between the source–sink pairs, while ensuring that the total flow on each arc does not
exceed itsweight. It is known that,when the graph is undirected and |N | = 2, the continuous relaxations of bothMinMC and
MaxMF have optimal solutions in which variables are multiples of 1/2: this property allows to solveMaxMF in polynomial
time in this case, if all the capacities are even [17,22]. One could hope that, if such a property holds when the graph is a
DAG and |N | = 2, then this might help to solve the problem efficiently, at least in special cases. Itai showed in [19] that
unfortunately this is not the case: more precisely, he gave an example showing that the variables of an optimal solution can
all be multiples of 1/3, and where the integrality gap forMaxMF is 5/3. Here, we generalize this construction.

More precisely, we show that, in DAGs with |N | = 2, on the one hand the integrality gap for MaxMF can be arbitrarily
close to 2, and, on the other hand, for any integer p > 1, there exist instances of size polynomial in p in which the value
of an optimal fractional multiflow and the value of each variable in this optimal solution is equal to some multiple of 1/p.
This implies, on the one hand, that no approximation algorithm with a ratio better than 2 can be obtained from an optimal
fractional multiflow, and, on the other hand, that scaling the weights by some constant is not sufficient to ensure an integer
optimal solution to the continuous relaxation of MaxMF. Note that, when |N | = 2, a trivial 2-approximation algorithm for
MaxMF is obtained by computing a maximum flow between s1 and s′1 and a maximum flow between s2 and s′2, and then
keeping the best one.

Given p > 1, we construct the following instance Ip: we start from a path with 2p vertices v1, . . . , v2p and orient its arcs
from v1 to v2p. Then, we define the first terminal pair (s1, s′1) by setting s1 = v1 and s′1 = v2p. We introduce the second
terminal pair (s2, s′2): s2 is linked to a new vertex u by a unique arc (s2, u), and, for each i ∈ {1, . . . , p}, vertex u is linked to
v2i−1 by an arc (u, v2i−1). Finally, for each i ∈ {1, . . . , p}, vertex v2i is linked to s′2 by an arc (v2i, s′2), and the 4p arcs of the
obtained DAG have weight 1. In Ip, the optimal solutions forMinMC andMaxMF are then easy to compute. On the one hand,
the optimal solution for MinMC has weight 2, and is obtained by removing the arcs (s2, u) and (s1, v2). On the other hand,
an optimal solution for MaxMF has value 1, and is obtained by routing one unit of flow between s1 and s′1 (or between s2
and s′2). The following lemma deals with the continuous relaxations ofMinMC and MaxMF in Ip:

Lemma 1. In Ip, the optimal solutions of the continuous relaxations of MinMC and MaxMF have value 2− 1
p .

Proof. In Ip, the optimal solution of the continuous relaxation of MinMC is obtained by setting x(s2, u) =
p−1
p and

x(v2i−1, v2i) =
1
p for each i ∈ {1, . . . , p}: this is indeed a solution, since the path from s1 to s′1 uses the p arcs (v2i−1, v2i), i ∈
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