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ARTICLE INFO ABSTRACT

Keywords: We provide an algorithm for the exact computation of the lattice width of a set of points
Lattice width K in Z2 in linear-time with respect to the size of K. This method consists in computing a
Shortest vector . . . .
A particular surrounding polygon. From this polygon, we deduce a set of candidate vectors
Greedy algorithm . - . . . .
allowing the computation of the lattice width. Moreover, we describe how this new
algorithm can be extended to an arbitrary dimension thanks to a greedy and practical
approach to compute a surrounding polytope. Indeed, this last computation is very efficient
in practice as it processes only a few linear time iterations whatever the size of the set of
points. Hence, it avoids complex geometric processings.
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Integer Linear Programming is a fundamental tool in optimization, in operational research and in economics.... Moreover,
it is interesting in itself since the problem is NP-hard in the general case. Several works were done for the planar case
[20,28,15] before Lenstra [23] proved that Integer Linear Programming can be solved in polynomial time when the dimension
is fixed. Faster and faster algorithms are nowadays developed and available, making the use of Integer Linear Programming
reliable even for high dimensional problems. The approach of Lenstra uses the notion of lattice width for precise lattice
definition to detect directions for which the polyhedron of solutions is thin. In polynomial time, the problem is then
reduced to a feasibility question: given a polyhedron P, determine whether P contains an integer point. To solve it, Lenstra
approximates the width of the polyhedron and gives a recursive solution solving problems of smaller dimension. The
approximate lattice width is also used in the recent algorithms of Eisenbrand and Rote [10] and Eisenbrand and Laue [9] for
the 2-variable problem.

Not surprisingly, following the arithmetical approach of Reveillés [26,7], the lattice width is also a fundamental tool
in digital geometry since it corresponds to the notion of width for digital objects [11]. Moreover, as an application of the
lattice width computation, we mention the intrinsic characterization of linear structures [12]. Indeed, the lattice width can
be computed for any digital set but it does not correspond to a direct measure of linearity. However, when combining the
lattice width along a direction and along its orthogonal, it can be used as a linearity measure. The work in [12] is currently
extended, by the second author of the present paper, to higher dimensions for detecting either linear or tubular structures.
A preliminary algorithm for the computation of the lattice width in the two-dimensional case was given in [11] with a
geometrical interpretation. It has the advantage to be extensible to the incremental and to the dynamic case but it seems
difficult to extend it to an arbitrary dimension. We proposed in [4] a new method, efficient in any dimension, and we extend
it here by detailing its main steps and by providing experimental results. This approach is based on the computation of
a particular surrounding polytope which is used to bound the set of candidate vectors to define the lattice width. This
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algorithm runs in linear time for the two-dimensional case. In higher dimensions, we propose a greedy method to compute
the surrounding polytope. This approach is efficient as it computes a maximal simplex over the set of points in few iterations
whatever the size of the set of points. Then, we directly deduce an appropriate surrounding polytope from this simplex.

The paper is organized as follows. In Section 2, the main definitions and tools are presented. Then, we describe the two-
dimensional algorithm introduced in [11] in Section 3. As this method cannot be easily extensible to higher dimensions, we
introduce in Section 4 a new geometric approach to estimate the lattice width in any dimension. This algorithm is based on
the computation of a particular surrounding polytope and we describe in Section 5 geometric methods to compute it. We first
focus on the two-dimensional case and we provide two linear-time approaches. Then, since these geometric constructions
might be difficult to extend in arbitrary dimensions, we provide a greedy algorithm which runs in any dimension. Some
conclusions and perspectives end the paper.

2. Definitions from integer lattice theory

In this section, we review some definitions from algorithmic number theory and we provide a precise formulation of the
problem we solve. Definitions are taken from [2,10,29].

Let K be a set of n points of Z¢. Moreover, we suppose that all numbers appearing in the points and in the vector
coordinates have their bit size bounded by log s. The width of K along a direction ¢ # 0 in RY is defined as:

wc(K) =max{c'x | xe K} —min{c'x | x e Kk}. (1)

Geometrically, if a set K has a width of I along the direction ¢ then any integer point which lies in the interior of the convex
hull of K also lies on a hyperplane of the form c"x = A where A corresponds to an integer value between min{c'x | x € K}
and max{c"x | x € K}. We say that K can be covered by these || + 1 parallel hyperplanes. It is straightforward to see that
w(K) = w(conv(K)) where conv(K) denotes the convex hull of K.

Let Z% = 7%\ {0} denote the set of integer vectors different from zero. The lattice width of K is defined as follows:

w(K) = min w¢(K). (2)
cezd*

We notice that the lattice width is an integer value. We briefly recall some basic and important properties about inclusion
and translation:

Lemma 1. For any sets of points A and B, such that conv(A) C conv(B) and for any vector ¢ € Z*, we have w.(A) < w.(B).
Thus, it follows that w(A) < w(B).

Lemma 2. Suppose that A’ corresponds to the points of A translated in the same direction. By definition, we know that for any
c € Z%, w.(A) = w.(A") and so we have w(A) = w(A'). The lattice width is invariant under translation.

The problem we would like to solve is the following one:

Problem (Lattice Width)
Given a set of integer points K C Z¢, find its lattice width w(K) as well as all the vectors ¢ € Z¢ such that w. (K) = w(K).

It is known [23] that the lattice width of a convex set K is obtained for the shortest vector with respect to the dual norm
whose unit ball is the polar set of the set % (K + (—K)). In the general case, computing the shortest vector is NP-hard. Thus,
approximations of the solution can be computed via standard arguments [29,19,27], but it does not lead us to an easy exact
algorithm in arbitrary dimension.

3. Computing lattice width in the planar case

3.1. The 2006 algorithm design

In 2006, Feschet proposed in [11] a method to compute in O(n+n log s) time the lattice width of a set of two-dimensional
integer points. We recall in this part this algorithm via connections with the notion of digital straightness and more precisely
with the notion of arithmetical digital lines [26]. This two-dimensional algorithm requires a convex polygon as input; as a
consequence we have to compute the convex hull H of K in O(n) time [18].

The main idea in [11] is based on the principle that the lattice width of K is necessarily reached for two opposite vertices
of its convex hull. To define the notion of opposite, we rely on the notion of supporting lines well known in computational
geometry [6]. A supporting line of H is a line D such that D N K # ¢} and H is contained entirely in one of the half-planes
bounded by D. For each supporting line D, there exists at least one vertex v of H such that the parallel line D, to D passing
through v is such that H entirely lies in the strip bounded by D and D,. If s denotes a vertex of H belonging to D then s and
v are called opposite (see Fig. 1, left). Opposite pairs are also called antipodal pairs. Note that in general, a supporting line
intersects H at only one point. The supporting line D intersecting H along an edge is called principal supporting line.

We now suppose H to be oriented counter-clockwise. As in the classical Rotating Calipers algorithm of Toussaint [16],
we can rotate the principal supporting lines D around the right vertex of DN H. D, is also rotated around v to keep it parallel
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