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a b s t r a c t

Human activities affect the distribution and abundance of plants, with impacts on ecosystem services
and human well-being; it is thus vital that a network of Protected Areas is capable of conserving plants
that are useful. Using the species distribution (SDM) model algorithmMaxEnt, we tested whether Egypt's
network of Protected Areas performs well in conserving the region's important medicinal plant species.
We constructed individual SDMs for each species, and then combined the models into a single ‘species-
richness’ layer, which we then compared to the distribution of the existing Protected Areas. Temperature
was the most important of eleven predictor variables used to build the SDMs. Assuming the SDM's
prediction of suitable habitat was accurate and corresponded to the occurrence of the medicinal plant
species, then on average species richness was significantly higher within than outside the Protected
Areas. Based on our findings, Egypt's Protected Areas are effective at conserving its medicinal plants.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Human activities are having a strong impact on plant abundance
and distribution, with consequent effects on ecosystem services
and human well-being (Klein et al., 2008). This growing effect of
human activities on biodiversity (Chapin et al., 2000) creates an
urgent need to understand the elements that determine the dis-
tribution and abundance of plants in order to enhance their con-
servation (Dubuis et al., 2011). The identification of species-rich
regions and those where geographically limited species co-occur
can optimise the creation of Protected Areas (Boj�orquez-Tapia
et al., 1995).

Medicinal plants are one of the most important elements of
biodiversity around the world (Klein et al., 2008; Okigbo et al.,
2008) because of their role in ecosystem services such as health-
care, cultural value and heritage, local economics and human well-
being, especially in poor areas (Klein et al., 2008; Okigbo et al.,
2008). Conserving and protecting these kinds of species is vital,
including improving knowledge about the important ecological
requirements of medicinal plants, and raising awareness among all
stakeholders to protect this heritage. Consequently, conservation
planning and effective management is important in protecting the

most threatened species in order to avoid declines in the diversity
of medicinal plants.

Species distribution models (SDMs) can be used to predict the
geographic distribution of individual species using locality data and
ecological variables as predictors (Franklin, 2009: 41e45). While
occurrence records can be harvested from museums/herbaria,
published reports, and original fieldwork, accurately identifying
whether a species is truly absent is exceedingly difficult. To address
this challenge, several SDM algorithms have been designed to
employ only positive presence data (Phillips et al., 2006). One such
SDM algorithm, MaxEnt, has been shown to be one of the most
effective tools for accurately predicting species distributions (Elith
et al., 2006). SDMs using MaxEnt offer a valuable tool for creating
general patterns of species richness without needing to analyse the
specific quality or precision of the predictions for every individual
species (Pineda and Lobo, 2009). Several studies have added
together the models for individual species to create maps of species
richness, the approach we adopt here. For example, Ortega-Huerta
and Peterson (2004) added the individual maps of 285 bird and 114
mammal species of part of Mexico to create a map of species
richness; Newbold et al. (2009) and Pineda and Lobo (2009) used
the same approach for Egyptian mammals and butterflies, and
Mexican amphibians respectively, as did de Pous et al. (2011) on
Moroccan reptiles. It is exciting that the same approach can be used
to project into the future under climate change (Distler et al., 2015),
as we have also done (Kaky & Gilbert, in prep.). Ideally the maps of
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predicted species richness should be validated using independent
data (Pineda and Lobo, 2009). Such species-richness maps make it
possible to distinguish hotspots of species richness (Newbold et al.,
2010), and hence to select feasible regions for conservation rela-
tively objectively (Pressey et al., 1993). This is a powerful tool to
help build conservation efforts or anticipate the future of biodi-
versity under worldwide climate change (Algar et al., 2009).

The climatic predictors used in our SDMs should be very suitable
for plants. The physiological toleration hypothesis suggests that
plant species richness is most elevated in warm and/or wet envi-
ronments because a more extensive range of functions can perse-
vere under such circumstances (Spasojevic et al., 2014). For
instance, Hawkins et al. (2003) found that a measure of the balance
between energy and water nearly always described spatial differ-
ences in species richness better than other environmental vari-
ables. In warm regions of the tropics and subtropics, the most
robust predictors are typically water variables, while water/energy
variables (for plants) or energy predictors (for animals) predomi-
nate in high latitudes (Hawkins et al., 2003).

Protected Areas currently cover about 12% of the terrestrial
surface of the earth (Seiferling et al., 2012), while those that have
been declared in Egypt cover 15% of the total land area (El-Gabbas
et al., 2016). The 30 Egyptian Protected Areas were all established
since 1983, based on the recommendations of experts familiar with
Egyptian biodiversity (Newbold et al., 2009). An obvious issue is the
extent to which these Protected Areas are capable of conserving
Egypt's fauna and flora: a basic requirement is that they contain a
high proportion of the biodiversity of the country. Thus ideally
there should be higher species richness within the Protected Areas
than outside them. Several studies have measured this: for
example, Sciberras et al. (2013) showed that the density and
biomass of fish and invertebrates inside partially protected areas
was higher than in unprotected areas; Newbold et al. (2009) and
Lee et al. (2007) found that species richness inside Protected Areas
was higher than outside, but others found the reverse (Pawar et al.,
2007; Traba et al., 2007). Human activities are one of the main
reasons for declines both inside and especially outside Protected
Areas: thus forest cover decreased between 1980 and 2001 in areas
surrounding most tropical Protected Areas (DeFries et al., 2005),
and one might anticipate similar declines in the fauna. The active
management of Protected Areas needs many more such compari-
sons to guide management decisions (Linkie et al., 2006).

Our objective is therefore to assess the role of the network of
Egyptian Protected Areas in conserving medicinal plants by
comparing their diversity within and just outside each Protected
Area, averaging this difference across all the Protected Areas. We
did this by predicting the distribution of each species using SDMs,
and summing together all the SDMs to create two kinds of species-
richness maps (by either using or not using thresholds to binarize
the predicted habitat suitabilities). We then use these maps to
assess the predicted species richness inside and outside Egypt's
Protected Areas.

2. Methods

We used data for 121 medicinal plant species of the Egyptian
flora. The occurrence data for these species were collated by the
BioMAP project (http://www.biomapegypt.org/), a project run from
Cairo in 2004e2008 and funded by Italian Debt Swap. The data are
presence-only records collected from different sources (i.e. litera-
ture, herbarium, and field work). To avoid inaccurate predictions,
we deleted species with fewer than ten records to avoid overfitting
(Baldwin, 2009), species with more than ten but spatially very
restricted records, and the one species whose SDM had amean AUC
less than 0.7 (Franklin, 2009: 222e223). We ended up with 114

species of Egyptian medicinal plants, with 14396 point records.
The environmental variables used in this study were 23 pre-

dictors, 19 of them (Bio layers) downloaded from the WorldClim
v1.4 dataset at resolution of 2.5 arc-minutes (http://www.
worldclim.org/bioclim) (Hijmans et al., 2005) (Table 1). Normal-
ized Difference Vegetation Index (NDVI) data for seven years
(2004e2010) were downloaded from the Spot Vegetation website
(http://free.vgt.vito.be/) and used to create two layers: maximum
NDVI (Max_NDVI), and the difference between the Minimum and
Maximum NDVI values (NDVI_differences). A further environment
layer was a habitat layer, derived from the Biomap project, which
divided Egypt's terrain into eleven classes (“sea, littoral coastal
land, cultivated land, sand dune, wadi, metamorphic rock, igneous
rock, gravels, serir sand sheets, sabkhas and sedimentary rocks”)
(for more detail, see Newbold et al., 2009). Altitude data were
downloaded from http://www.cgiar-csi.org/data/elevation and the
resolution rescaled from 90m to be 2.5 arc-minutes (see (El-Gabbas
et al., 2016). Eleven of the 23 environmental variables (see Table 1)
remained for use after 12 were removed based on collinearity
analysis using the Variance Inflation Factor, implemented in R v2.15
(the 'car' package: R Development Core Team, 2012).

We used Maximum Entropy (MaxEnt) version 3.3.3 k (Phillips
et al., 2006) (downloaded from: http://www.cs.princeton.edu/
~schapire/maxent/) to run the models, choosing a set of options
(i.e. feature classes QPT, 10000 background points, 1000 iterations,
cross-validation with 10 replications, 10% training presence
threshold, and logistic output format) to create both ‘probability’
(i.e. raw values of habitat suitability) and ‘binary’ (predicted 'suit-
able'/'unsuitable' via thresholding) maps. MaxEnt performance is
good with presence-only data and small numbers of records (Elith
et al., 2006; Franklin, 2009: 62e63), and its performance is good in
comparison with other algorithms (Elith et al., 2006). The options
were chosen after exhaustive runs with different option combina-
tions (of feature classes, number of background points, number of
iterations and regularization values) to obtain the best models. Two
statistics were used to evaluate the accuracy of each model, the
AUC, and the true skill statistic (TSS) (Allouche et al., 2006). TSS
values lie between �1 and þ1: close to þ1 indicates perfect per-
formance, while close to zero or less than zero point to model
performance no better than random (details, see Allouche et al.,
2006). (For details of each SDM, see Supplementary Table S1.).

The relative importance of the environmental predictors can be
determined in three ways by Maxent (percent contribution, per-
mutation importance, jacknife (Phillips et al., 2006):). Care is
needed when there are high correlations between variables, but
pre-screening variables for collinearity (as we have done) mini-
mises this problem. Here we used permutation importance to
determine the importance of the environmental predictors, calcu-
lated by permuting the values of each predictor and calculating the
resulting reduction in the training AUC: a large reduction shows
that the model is influenced by that predictor. The values are
standardized to a percentage (Phillips et al., 2006).

We created two kinds of maps of the distribution of species
richness. The first was the ‘probability’ map, made manually by
obtaining the average of the replicate ascii files obtained from
Maxent for each species, and then adding all the species layers
together using the ‘raster calculator’ of ArcGIS10.2.2. This map was
then rescaled to fit the same range as the second type, the ‘binary’
map, which is the product of adding together the binary maps for
each species. The binary map converts each pixel value of the
MaxEnt output (a continuous value between 0 and 1) into binary
data (predicted suitable/unsuitable) by choosing a threshold rule
(see Liu et al., 2005). We chose the “10% training presence” as our
threshold rule (El-Gabbas et al., 2016), which produced a binary
map for each of the 10 replicates for each species. Subsequently we
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