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a b s t r a c t

Human-driven alteration of the Chaco strongly affects ecological patterns and associated processes at all
spatial scales. To understand these modifications, sufficient methods for describing and quantifying high
levels of landscape complexity caused by human activities in the region are urgently needed. Most
methods involve the use of passive remote sensors, which capture complexity in only two dimensions
(2D). A common 2D approach has been to calculate landscape metrics, such as Shannon's Landscape
Diversity Index. But, it is not clear what aspects of three dimensional (3D) vegetation structure are being
captured by these metrics. 3D structure is known to be as important as or more important than 2D
structure in determining landscape patterns of biodiversity of many groups of organisms. In addition,
studies have used a limited number of coarsely defined land-cover classes to calculate metrics. Our
question was: how is vegetation structure related to remote sensing attributes in an agricultural frontier
in the subtropical dry Chaco, NW Argentina? A secondary question was to explore the relationships
between traditional landscape metrics and the semivariogram, a geostatistical tool used to describe 2D
complexity. We described landscape complexity from the panchromatic QuickBird band and measured
vegetation structure in 22-1 ha plots across an agricultural frontier in the subtropical dry Chaco, northern
Argentina. A total of 2683 individual trees in 51 plant species and 21 families were measured in the field
and 25,665 points were recorded to estimate foliage height diversity. Four landscape complexity groups
were identified by a two-way cluster analysis using the 2D metrics. Four vegetation variables differed
significantly among the 2D complexity groups: the standard deviation of the Enhanced Vegetation Index,
the coefficient of variation of density per transect (CV density), mean tree diameter (DBH), and foliage
height diversity (FHD). Largest patch index and semivariogram range were negatively related to CV
density, mean DBH and FHD, while semivariogram sill, mean shape index, landscape shape index and
number of patches were positively related to all three vegetation variables. Landscape metrics were not
related to tree species diversity or density as previously shown, probably as a result of structural simi-
larity among the dominant tree species in the Chaco biome.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Human-driven changes of landscapes are affecting biodiversity
patterns and associated ecological processes at all spatial scales
(MacDougall et al., 2013). Landscape complexity, broadly defined as
the number, arrangement, and scaling relationships of key ele-
ments of ecosystem structure (Gustafson, 1998; Lovett et al., 2006),
mediates changes in biodiversity patterns and associated processes.

The mechanisms of this mediation are variable and include species’
movement (Huffaker, 1958), changes in productivity and biomass
(Daufresne and Loreau, 2001), and changes in food web structure
(Bellisario et al., 2012). To understand the consequences of human-
driven changes, methods for describing and quantifying landscape
complexity are urgently needed.

Different methods to quantify changes in landscape complexity
have been developed in the last decades (Lovett et al., 2006; Wu,
2013). Most of these methods involve the use of passive remote
sensors which capture complexity in two dimensions (2D) (Hyde
et al., 2006) and the calculation of landscape metrics to quantify
2D complexity, such as Shannon's Landscape Diversity Index (SDI)
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(Gustafson, 1998). These metrics reveal how landscape complexity
affects processes occurring at species-, food web-, and ecosystem-
scales (Kupfer, 2012), though most studies involving their calcu-
lation were interested in examining their behavior through time
(Uuemaa et al., 2009) or were limited to a few coarsely defined
land-cover classes such as forests. Alternatively, complexity can be
described in three dimensions (3D). LIDAR (LIght Detection And
Ranging) technology has been used successfully to capture vege-
tation 3D complexity (Lefsky et al., 2002) but the high costs of this
technology still limit its application in most parts of the world
(Selkowitz et al., 2012). In the absence of LIDAR and given that
anthropogenic and natural disturbances affect habitats sometimes
in a subtle manner we need to combine remote sensing and field
data in order to identify what aspects of complexity are being
modified by human activities (Pisek and Oliphant, 2013). But there
are not enough field studies to confidently calibrate the informa-
tion yielded by most remote sensors (Hall et al., 2011). In addition,
studies quantifying 2D landscape complexity do not clearly link
pattern to processes (Li and Wu, 2004; Cushman et al., 2008); thus
we are not able to clearly interpret metrics. One way of inter-
preting the link between patterns and processes is examining what
aspect of the 3D vegetation is being captured by landscape metrics.

Linking field data of vegetation structure to landscape
complexity as determined from satellite images has shown to be
complex (Malhi and Rom�an-Cuesta, 2008) likely because vegeta-
tion structure depends on many factors such as plant species
identities, species distributions, species life history traits, and
disturbance history, among others (Whitmore, 1978). The degree to
which each factor can be represented in 2D dimensions will
determine how well vegetation structure is represented in satellite
images (Broadbent et al., 2008). For example, studies have generally
focused on plant species richness and they showed variable and
sometimes contradictory relationships with landscape metrics.
Kumar et al. (2006) showed that plant species richness was posi-
tively related to Simpson's landscape diversity, edge density and
interspersion and negatively related to mean patch size; Moser
et al. (2002) showed that it was positively related to shape
complexity, and Burton and Samuelson (2008) showed that it was
positively related to forest cover and largest patch index and
negatively related to landscape diversity. Fewer studies have
related other aspects of vegetation to landscape metrics (e.g. forest
succession stage and crown closure were related to Shannon's
landscape diversity (Terzio�glu et al., 2009)). Last, a smaller group of
studies have examined vegetation characteristics in relation to
semivariograms, a geostatistical tool used to describe 2D
complexity from satellite images (Curran, 1988; Costantini et al.,
2012). Semivariograms have been used mainly to characterize
canopy cover (Cohen et al., 1990; Colombo et al., 2004; Johansen
and Phinn, 2006) but it is not clear how they complement with
traditional metrics. Because most studies focus on only one or two
characteristics of vegetation to relate them to landscape metrics or
their description of vegetation is frequently coarse, we still do not
understand the generalities of the relationship between vegetation
structure and remote sensing data.We need to refine the resolution
of both, vegetation and remote sensing data in order to find these
generalities. This approach will help us scale up the study of bio-
logical patterns and processes from plot to landscape.

Our question in this study was: how is vegetation structure
related to remote sensing attributes in an agricultural frontier in
the subtropical dry Chaco, NW Argentina? A secondary question
was to explore the relationships between traditional landscape
metrics and the semivariogram. We collected vegetation data at
fine scale and QuickBird data in 22 1 ha-plots including forest, ri-
parian forest, and agricultural fields across the agricultural frontier.

2. Methods

2.1. Study area

This study was conducted in the dry Chaco biome within the
Tapia-Trancas watershed located in the province of Tucum�an, NW
Argentina (26�500S, 65�200W, Fig.1). The dry Chaco, one of the three
biomes within the Chaco, shows a continental, warm and sub-
tropical climate with mean annual temperature of 20 �C (18e23 �C)
and annual rainfall of 450 mm falling between October and March
(Bianchi and Y�a~nez, 1992). It is characterized by subtropical xero-
phytic vegetation that includes spiny, small trees and shrubs, some
cacti, herbs, epiphytes, and vines (Cabrera, 1976; Vervoost et al.,
1981). Dominant tree species include Schinopsis lorentzii (Ana-
cardiaceae) and Aspidosperma quebracho-blanco (Apocynaceae)
whereas dominant shrubs include Acacia aroma, Acacia praecox,
Prosopis alba and Cercidium praecox (Fabaceae) (Digilio and
Legname, 1966).

During the last 40 years the Tapia-Trancas watershed has
experienced increasing habitat degradation due to agricultural
expansion, deforestation, grazing pressure, and fire (Aizen and
Feinsinger, 1994; Grau et al., 2005; Aide et al., 2012). This has
resulted in a complex mosaic of forest fragments embedded in a
matrix of pastures, corn, sorghum, legume, and soybean fields.
Large areas of nearly continuous dry Chaco forest can still be found
surrounding the agricultural fields and urban areas are relatively
small. As any other ecosystem edge, where particularly high species
diversity and complex ecological interactions are found (Fagan
et al., 1999), agricultural frontiers in the dry Chaco are a priority
for conservation (Brown et al., 2005).

2.2. Image pre-processing

To describe landscape complexity we used a high resolution
QuickBird image (2.6 m resolution for multispectral bands and
0.55 m resolution for panchromatic band) collected in November
2007, centered on the study site and covering an area of 10� 10 km.
This period of the year was selected because the rainy season had
started and tree crowns were full of leaves. Accordingly, during this
period the maximum biological activity occurs (e.g., Monmany and
Aide, 2009).

QuickBird multispectral images have four bands (blue
[450e520 nm], green [520e600 nm], red [630e690 nm], and near
infrared [760e900 nm]) that yield information about differences
between soil (blue band) and vegetation and information about
different attributes of plant communities (green, red, and near
infrared). The QuickBird data was subjected to a series of pro-
cedures. First, the red and infrared bands in themultispectral image
were enhanced using the Gram-Schmidt Spectral Sharpening
module in ENVI 4.8 (Exelis Visual Information Solutions, Boulder,
Colorado). Through this pan-sharpening a low spatial resolution
band (2.8 m in the multispectral image) is merged with a high-
resolution band (the 0.55 m panchromatic band) with resampling
to the high-resolution pixel size (Exelis Visual Information
Solutions, 2004). The result is an image with the best spectral
and spatial resolution possible. Second, the image was converted to
top-of-atmosphere spectral radiance and then atmospherically
corrected to at-surface spectral reflectance using the QUAC tool in
ENVI 4.8.

Once corrected, we used the built-in function in ENVI to calcu-
late the Normalized Difference Vegetation Index (NDVI) and we
used Band Math to calculate the Enhanced Vegetation Index (EVI),
both derived from combining the red (RED) and infrared (NIR)
bands according to the following:

A.C. Monmany et al. / Journal of Arid Environments 123 (2015) 12e20 13



Download	English	Version:

https://daneshyari.com/en/article/4392829

Download	Persian	Version:

https://daneshyari.com/article/4392829

Daneshyari.com

https://daneshyari.com/en/article/4392829
https://daneshyari.com/article/4392829
https://daneshyari.com/

