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Anchored in 'average thinking' in studies of arid rangeland dynamics
e The need for a step forward from traditional measures of variability
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a b s t r a c t

There is a wide consensus that arid and semi-arid environments are highly variable in space and time.
The most frequent approaches to describe and analyze arid and semi-arid rangelands are based on the
usage of averages and Normal distributions as main references to describe spatial and temporal differ-
ences. We argue that rangeland ecology science should move forward in methods to better capture the
patterns of rangeland dynamics, rather than just focusing on simple measures of variability. We provide
different simulated time series data in order to illustrate the limitations of some currently used meth-
odologies. We call for the application of time series methods in order to better understand complex
dynamics in arid and semi-arid rangelands.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There is a wide consensus that arid and semi-arid environments
are highly variable in space and time (Ellis and Swift, 1988;
McAllister et al., 2009). Variability is a concept of high interest in
rangeland ecology and should be tackled as an inherent quality of
rangeland dynamics rather than a disturbance, in order to provide
help to understand and manage variable systems (Easdale and
Domptail, 2014). The most frequent approaches to describe and
analyze arid and semi-arid rangelands (hereafter called arid) are
based on the usage of average as a main reference to describe
spatial and temporal differences. The problem arises when com-
parisons of simple statistical descriptors of rangeland dynamics
from different regions, which should be treated as preliminary
descriptions due to simplicity, are then implicitly used to depict
their temporal behavior.

One of the used approaches in comparing rangeland dynamics is
the direct use of average rainfall and mean Normalized Difference
Vegetation Index (NDVI) as proxies, and estimations of average net
primary production (NPP) or average forage production (e.g.
Paruelo et al., 1997; Anyamba and Tucker, 2005; Hunt and Miyake,

2006; Golluscio et al., 2010; Eisfelder et al., 2014). The most
frequent temporal windows to perform and compare averages are
the annual and seasonal periods, or fixed periods based on defini-
tions of the length of vegetation growth, or as a binary model (i.e.
annual dry and wet periods). There is an implicit assumption that
any other intra-annual or inter-annual patterns or cycles are
considered as not relevant or directly ignored as noise.

Variability is often described using statistics that are based upon
these averages. For example, variability is said to be tackled by the
way of exploring anomalies. The case of an anomaly is generally
defined when a monthly, seasonal or annual (e.g. NPP or rainfall)
deviation is beyond a pre-defined threshold based on an average of
a time series. For instance, an anomaly could be defined with a
deviation of at least twice the mean standard deviation for a month
above or below the n-year mean (Eisfelder et al., 2014), or as a
percentage (e.g. 40% or 60%) above or below the average (Anyamba
and Tucker, 2005). Themean plus orminus two standard deviations
corresponds to a 95% confidence interval, and this normal distri-
bution is the main argument that support a definition of significant
anomalies (Shackleton, 1986; Vellinga and Wood, 2002). For a
random and normally distributed time series, one datum every
twenty data would be considered anomaly.

Variability is also said to be tackled by the coefficient of variation
(CV, [standard deviation mean�1]) (Ellis and Swift, 1988), and in* Corresponding author.
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particular to compare different ecological regions or gradients (e.g.
Jobbagy et al., 1995; von Wehrden et al., 2010; Easdale and Aguiar,
2012; Irisarri et al., 2012). Furthermore, a threshold based on CV
was proposed as a way to provide an operative definition that
distinguishes between equilibrium and not-equilibrium dynamics
in arid and semi-arid rangelands (e.g. Ellis and Chuluun, 1993;
Behnke et al., 1993; Okayasu et al., 2011; von Wehrden et al.,
2012). The rule of 33% of CV in precipitation gained consensus
among many scholars (von Wehrden et al., 2012) and have strong
theoretical and management implications. Below this threshold,
systems are said to be at equilibrium, which implies that ecosystem
dynamics is controlled by internal factors (i.e. density-dependent).
In this case, stocking rate is one of the most important managerial
decisions in livestock systems (e.g. Holecheck, 1988). On the other
hand, above that threshold rangeland dynamic is said to be mostly
driven by external factors such as climate. Hence, opportunistic
stocking strategies and mobility are emphasized to cope with
variability. Some authors discussed the theoretical implications of
this dichotomy, emphasizing some contradictions and proposing
ways to overcome the problems (e.g. Illius and O'Connor, 1999;
Fernandez-Gim�enez and Allen-Diaz, 1999; Briske et al., 2003;
Vetter, 2005). However, less effort is posed to shed-light on the
problems embedded in methods that are used to study such
dynamics.

The main problem with these proposed methods, when used to
distinguish among different arid rangeland dynamics, is that they
are wrong or ineffective. In particular, methods are mostly based on
strong assumptions such as normal distributions, linearity and in-
dependence between successive values of the time series data,
which rarely could be met. Hence, they are inadequate to provide
useful information about the ecosystem dynamics. In order to
capture the patterns of rangeland dynamics, we argue that there is
a need to move forward from simple measures of variability,
especially when long time series are available such as in the case of
remotely sensed data. We provide different simulated time series
data in order to illustrate the limitations of these methods, while
comparing the outcome from a simple Fourier analysis (i.e. power
spectrum). We call for the application of time series methods in
order to effectively tackle ecosystem dynamics in arid rangelands.

2. Some examples of time series with equal statistical
properties

In order to illustrate some of the mentioned problems, we
generated six different time series that represent different hypo-
thetical arid rangeland dynamics (e.g. as measured by series of
monthly NDVI). We developed the series with completely different
dynamical patterns but using the same statistical properties: mean
zero and standard deviation [2�1/2 ¼ 0.707] (Fig. 1).

Sinusoidal functions represent perfectly periodic systems
(Fig. 1A, B, C), and have the same statistical properties (i.e. the
standard deviation of a sinusoidal wave is defined by the amplitude
divided by the square root of two; see Cartwright, 2007). The main
difference among the sinusoidal functions is their frequency. In
time series, frequency refers to a phenomenon that repeatedly
occurs per unit of time in a given period. Hence, the first series
represent a typical dynamic with an annual frequency-domain
component that defines a cycle with two phases (e.g. winter and
summer, Fig. 1A). Then, double frequencymeans that two cycles are
included within the same unit of time (Fig. 1B) and represent intra-
annual cycles. Finally, half a frequency refers to a biannual
frequency-domain component (Fig. 1C), as an example of an inter-
annual cycle.

The other time series are different kinds of noise called white,
red and blue (e.g. Box and Jenkins, 1970; Ljung and Box, 1978;

Rudnick and Davies, 2003). We used time series that represent
these kinds of noise because they are well described and studied in
environmental science (e.g. Kaytala et al., 1997; Balmforth et al.,
1999). They were created by using the normally distributed
random number generator from python (Van der Walt et al., 2011),
and the parameters were mean zero and standard deviation 0.707,
as the sinusoidal functions. First, the Gaussian white noise is a time
series that have a constant spectral density and is not self-
correlated (i.e. the successive values are independent from each
other (Fig. 1D)). Second, the red noise is dominated by low level
frequencies, and is positively self-correlated (Fig. 1E). Finally, the
blue noise is a time series dominated by high level frequencies,
with negative self-correlation (Fig. 1F).

Notwithstanding the technical aspects that define the different
time series, we would like to emphasize that the six time series
would be categorized as having similar dynamics if we only use
mean and standard deviation, or coefficient of variation, as unique
descriptors, masking the dissimilarities among the different pat-
terns of behavior. In order to provide an example of the application
of a simple method that can discriminate differences in time series
dynamics, we analyzed the power spectrum of the same six time
series with Fourier analysis (Fig. 2). The power spectrum, or also
called periodogram, describes how the variance of the series is
distributed over the frequency components, and helps in the
identification of the frequencies with the higher signals or power.
The nature of the spectrum gives also valuable information
whether the dynamic is periodic or not. For example, the sinusoidal
functions are periodic systems with only one clear signal, differing
among them in the frequency-domain component as we explained
above (Fig. 2A, B, C). For these cases, the power spectrum clearly
discriminates among annual, intra-annual and inter-annual dy-
namics for the three sinusoidal functions, respectively. The other
three series that relate to different kinds of noise are not periodic,
with a constant spectral density in the case of thewhite noise (Fig. 2
D), low level frequencies in the red noise (Fig. 2E), and high level
frequencies in the blue noise (Fig. 2F).

3. Discussion

‘Average thinking’ is a metaphor that represents the prevalence
of some qualitative assumptions in some of the frequently used
approaches and methods aimed at tackling spatio-temporal dy-
namics of arid rangelands. In particular, we point out two main
qualitative assumptions that should be revised in future research.

One of the main qualitative assumptions regards to the refer-
ence value. The assumption is the consideration of predefined
windows of time, which are then relevant to analyze temporal
behaviors. The annual and seasonal periods are defined by the
length of the photoperiodic cycle, determined by physical princi-
ples (i.e. a year is defined by twelve fixed months and a season by
three fixed months). While photoperiod influence vegetation dy-
namic (e.g. phenology), other factors such as climate can increase or
reduce the annual or seasonal length due to the vegetation re-
sponses to changing environmental conditions (e.g. Menzel, 2000;
Cramer et al., 2001). Fixed periods of time defined by strictly
focusing on the length of vegetative growth period have also re-
strictions (e.g. Wessels et al., 2007; Fabricante et al., 2009; Easdale
and Aguiar, 2012). In these cases, the problem is that winter phase
is eliminated as not relevant and the annual cycle is only repre-
sented by a subset of data. This procedure assumes that every
annual cycle begins in spring and is not influenced by the previous
winter. We emphasize that a periodic cycle of ecosystems or
vegetation communities can be much more variable than a calen-
dar year or a fixed period of time and should be tackled adequately
(e.g. as shown in the examples by different frequencies
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