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a b s t r a c t

Atmospheric water demand affects a variety of factors, including primary production and the terrestrial
water balance. Precipitation gradients from arid to humid regions also impact the water balance and play
a large role in vegetation dynamics. Focusing on a 23-year period (1989e2011), we examine precipitation
during the growing season in conjunction with the Normalized Difference Vegetation Index (NDVI) series
for 21 satellite scenes spanning across the southwestern United States. We classify the satellite scenes
into three different groups, based on the United Nations Aridity Index (AI). Group 1 is categorized as
relatively humid with AI� 0.65, group 2 is intermediate with 0.50 � AI< 0.65, and group 3 is relatively
dry with AI< 0.50. We target three types of vegetation covers: shrubland, pasture, and grassland. On a
long-term basis, we find significant positive trends in the NDVI series for all types of vegetation in groups
1 and 2. The magnitude of the trend in NDVI decreases with the aridity level. However, neither the total
precipitation nor the number of precipitation events (>3 mm and >13 mm) changed during this time. We
also use cross-correlation analyses to establish the lagged behavior of the three types of vegetation in
relation to precipitation amount and number of events. The vegetation response is similar between
precipitation amount and number of precipitation events. However, in the arid region, we find distinct
responses to precipitation depending on the vegetation type. The magnitude and significance of the
vegetation response to precipitation patterns increase with environmental aridity. There is thus a
meaningful disparity of vegetation behavior in time and space.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ongoing climate change is being attributed to multiple factors,
and evidences of climate change impact are reported widely
around the globe (Huntington, 2006). The increasing emission of
greenhouse gases is recognized to be the main driver of climate
warming. As a result, during the period of 1880e2012, IPCC (2014)
reported a global increase in temperature of 0.85 �C. Furthermore,
based on different greenhouse gases emission scenarios, IPCC
(2014) projected the global mean surface temperature to rise by
the end of the current century. Likewise, meaningful changes are
projected in future precipitation regimes. Although the magnitude

varies within the emission scenarios, changes in climate are ex-
pected to significantly impact arid ecosystems. However, the pro-
jected changes in precipitation amount vary widely, depending on
the models and their underlying assumptions (O'Gorman, 2012).
Any potential benefit from an increase in precipitation amount
would likely be offset by an increase in evapotranspiration due to
increased temperature (Maestre et al., 2012). This suggests complex
perturbations in the hydrologic cycle in the future.

Water stress on vegetation is one of the ways of characterizing
the amount of available moisture. Based on simulations from
different multi-model ensembles, Seager et al. (2007) projected a
consistently drier climate in the southwestern United States for the
21st century. In contrast, Maestre et al. (2012) reported several gaps
in our knowledge regarding future impacts of climate change on
drylands, and highlighted the need to consistently determine these
impacts. Specifically for the southwestern United States,Weiss et al.
(2004) emphasized the lack of studies addressing vegetation dy-
namics in relation to climate variability. Relying on model outputs
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to understand the future of climate and vegetation is clearly
essential. However, no matter how sophisticated or robust any
projection may appear, most models have uncertainties associated
with their simulations. Therefore, it is necessary to consider first
the observed trends to improve our observational understanding
and hence refine our ability to interpret model simulations.

During the last two decades, the use of remote sensing has been
essential for vegetation studies at large scales. The Normalized
Difference Vegetation Index (NDVI) has been a successful and
reliable tool in a variety of vegetation and precipitation studies (e.g.,
Rigge et al., 2013; Vicente-Serrano et al., 2006). Our study analyzes
the influence of precipitation characteristics on vegetation during
the growing season of May through September (Slayback et al.,
2003) in arid and semi-arid regions. We make use of the NDVI
and focus on the 23-year period from 1989 to 2011. Three different
types of vegetation cover are considered, and their observational
variability is investigatedwith particular focus on the southwestern
United States, which spans a wide range in terms of aridity. NDVI
has been frequently employed to address the influence of clima-
tological components, such as temperature and precipitation on
vegetation cover. However, the long-term impacts of precipitation
patterns are still unclear at regional scales because of the temporal
limitation of satellite data.

It is generally recognized that climate change will bring about a
decrease in precipitation amount and a higher variability in pre-
cipitation events across arid and semi-arid regions (IPCC, 2014;
Huntington, 2006). However, a timely supply of water via precipi-
tation is critical for rain-fed vegetation. The expected future
behavior of vegetation will be closely tied to the variability of
precipitation, as driven by climate change. This study uses remotely
sensed vegetation estimates across a strongmoisture gradient in an
arid and semi-arid region during the vegetation growing season to
address how precipitation characteristics (number of events and
precipitation amount) may relate to the growth patterns of
different types of vegetation. As part of this main objective, we also
estimate vegetation and precipitation trends, potential temporal
lags of the vegetation response, as well as the effects of seasonality
on vegetation growth.

2. Climate classification across the study domain

The southwestern United States is relatively dry, compared to
the rest of the country. Water availability is already a critical issue

and will become of heightened importance due to continued
climate change. Because of the crucial role of vegetation in hydro-
logical processes, it is paramount to understand its future vari-
ability in the southwestern United States. The study region
encompasses the states of Louisiana, Arkansas, Oklahoma, Texas,
NewMexico, and Arizona (Fig. 1). We classify this domain based on
an aridity index, which is a useful indicator (Deniz et al., 2011) and
describes the degree of dryness of the climate in a specific region.

Indeed, several indices have been developed and proposed for
regional classification according to their aridity level (Sahin, 2012;
Gao and Giorgi, 2008; De Martonne, 1926). However, the best
known aridity index is defined by the United Nations Environ-
mental Program (UNEP; Maestre et al., 2012). The UNEP aridity
index (AI) is the ratio of annual precipitation (P, mm) to the annual
potential evapotranspiration (PET, mm): AI ¼ P/PET. This aridity
index is widely accepted for characterizing dryland climatic
boundaries (Maestre et al., 2012), and is employed here to char-
acterize the degree of aridity across the spatial domain of our study.
Based on AI, drylands are defined as regions where AI< 0.65. An
extended UNEP classification identifies climate types (Maestre
et al., 2012; Sahin, 2012) according to AI as: hyper-arid
(AI< 0.05), arid (0.05 � AI< 0.20), semi-arid (0.20 � AI< 0.50),
sub-humid (0.50 � AI< 0.65), semi-humid (0.65 � AI< 0.80), hu-
mid (0.80 � AI< 1.0), and very humid (1.0 � AI< 2.0). We assessed
the UNEP AI across the study domain using the long-term average
yearly Penman-Monteith potential evapotranspiration (PET)
(Vorosmarty et al., 1998) and precipitation, provided by the Earth
Observation System (EOS)-EarthData at the University of New
Hampshire (http://eos-earthdata.sr.unh.edu). The original PET and
precipitation data were gridded at a 0.5� resolution. Fig. 1 indicates
that large parts of our study domain have an AI< 0.65 and can thus
be classified as drylands. The dryness level gradually increases from
east to west over the study region (Fig. 1). The local vegetation
follows that trend in that it is much denser in the more moist east,
and gets sparser westward (Homer et al., 2004).

For the vegetation dynamics analysis, we selected 21 Landsat
satellite scenes (see details in the methodology section) across the
domain. Each satellite scene has, on average, a footprint of
170 km� 185 km. For the purpose of this study, we classified the 21
satellite scenes into three groups (Table 1) based on the dryness of
the climate. The first group (group 1), here designated as “moist,” is
comprised of scenes 1 to 7 which span the relatively humid regions
with AI� 0.65. The second group (group 2), here designated

Fig. 1. UNEP Aridity Index variability and selected satellite scene (footprint) locations across the study region.
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