



Theoretical Computer Science 366 (2006) 82-97

Theoretical Computer Science

www.elsevier.com/locate/tcs

# The intersection of algebra and coalgebra<sup>☆</sup>

### J. Adámek

Technical University of Braunschweig, P.O. Box 3329, 38023 Braunschweig, Germany

#### Abstract

Presheaf categories are well-known to be varieties of algebras and covarieties of coalgebras. We prove the converse: if a category is a variety as well as a covariety, then it is a presheaf category. Our main result is that all coalgebras on a set functor H form a presheaf category iff H is a reduction of a polynomial functor. © 2006 Elsevier B.V. All rights reserved.

MSC: 18C05; 18B20; 08B99; 18C20

Keywords: Variety; Covariety; Presheaf category

#### 1. Introduction

The aim of the paper is to prove the equation

 $algebra \cap coalgebra = presheaves$ 

over many-sorted sets. In the more restrictive case of algebra and coalgebra over **Set** the equation is

 $algebra \cap coalgebra = monoid actions.$ 

This shows that here, essentially, just sequential automata form the intersection of algebra and coalgebra. In fact, a sequential automaton can be viewed as an algebra, or as a coalgebra: the main ingredient, the next-state function

$$\delta: Q \times I \longrightarrow Q$$
 ( $I = \text{the input set}$ )

defines an algebra of the endofunctor  $(-) \times I$  of **Set**, but by currying it

$$\hat{\delta}: O \longrightarrow O^I$$

one gets a coalgebra of the endofunctor  $(-)^I$ . Now suppose that M is a monoid, then the category of M-sets (i.e., sets with a monoid action of M) is a subcategory of the category of sequential automata with the input set  $I = M^*$ , and

*M*-sets are easily seen to be both a variety and a covariety of sequential automata. Is this a unique such situation, or are there other interesting examples of coalgebras that are algebras? A surprisingly general example was discovered by James Worrell: he proved in [21] that for every (not necessarily finitary) signature  $\Sigma$  we can view  $\Sigma$ -coalgebras, i.e., coalgebras of the *polynomial endofunctor* of **Set** 

$$H_{\Sigma}Q = \coprod_{\sigma \in \Sigma} Q^n \quad (n = \text{arity of } \sigma)$$

as a variety of algebras. In fact, the category **Coalg**  $H_{\Sigma}$  of all  $\Sigma$ -coalgebras is equivalent to a presheaf category **Set**<sup> $\mathcal{A}^{op}$ </sup> for some small category  $\mathcal{A}$ , see [21]. Now **Set**<sup> $\mathcal{A}^{op}$ </sup> is always a variety of unary algebras—but not always one-sorted! Thus, the slogan

all  $\Sigma$ -coalgebras form a variety of algebras

is, in general, only true if we move from one-sorted sets to many-sorted ones. Therefore, in the present paper we consider algebra and coalgebra over many-sorted sets (given by endofunctors of  $\mathbf{Set}^S$ , the category of S-sorted sets). Our results also hold for base categories of the form  $\mathbf{Set}^C$  where C is a small category, see 5.3.

We are going to describe the intersection of algebra and coalgebra, i.e., those categories which are at the same time varieties of F-algebras and covarieties of G-coalgebras for endofunctors F and G of many-sorted sets. We consider all these categories as *concrete categories*, i.e., pairs consisting of a category  $\mathcal{V}$  and a faithful ("forgetful") functor  $V: \mathcal{V} \longrightarrow \mathbf{Set}^S$ . Given two concrete categories  $V_i: \mathcal{V}_i \longrightarrow \mathbf{Set}^S$  for i = 1, 2 we call them *concretely equivalent* if there exists an equivalence functor  $E: \mathcal{V}_1 \longrightarrow \mathcal{V}_2$  such that  $V_1$  is naturally isomorphic to  $V_2 \cdot E$ ; notation  $\mathcal{V}_1 \simeq \mathcal{V}_2$  (see [15]).

We will strengthen the result of James Worrell in several directions:

- (1) Considering presheaf categories  $\mathbf{Set}^{\mathcal{A}^{op}}$  as concrete categories over  $\mathbf{Set}$ , the category of  $\Sigma$ -coalgebras is *concretely* equivalent to a presheaf category. And we prove the converse, which is our main result: given an endofunctor H of  $\mathbf{Set}$  such that  $\mathbf{Coalg}\ H$  is concretely equivalent to a presheaf category, then H is a reduction of a polynomial functor—thus  $\mathbf{Coalg}\ H$  is the category of  $\Sigma$ -coalgebras for some  $\Sigma$ . ("Reduction" means that the value at the empty set can be changed.)
- (2) Considering  $\mathbf{Set}^{\mathcal{A}^{op}}$  as a concrete category over  $\mathbf{Set}^{S}$ , where S is the set of objects of  $\mathcal{A}$ , we prove that the presheaf category is *always* concretely equivalent to a covariety of coalgebras. And conversely: every many-sorted variety concretely equivalent to a many-sorted covariety is a category of presheaves.
- (3) In contrast to (2), only very special small categories  $\mathcal{A}$  have the property that  $\mathbf{Set}^{\mathcal{A}^{op}}$  is concretely equivalent to  $\mathbf{Coalg}\ H$  over  $\mathbf{Set}$ :  $\mathcal{A}$  has to be equivalent to the  $\Sigma$ -tree category for some signature  $\Sigma$ . This category has all  $\Sigma$ -trees (see Example 2.7) as objects, and morphisms from t' to t are all nodes of t whose subtree (in t) is t'.

For all these results we work with concrete categories over **Set**<sup>S</sup>. The fact that Worrell's result about polynomial endofunctors of **Set** can be strengthened as in (1) above makes heavy use of concrete equivalence: we do not know the answer to the:

**Open problem.** For which endofunctors H of  $\mathbf{Set}^S$  is the category  $\mathbf{Coalg}\ H$  equivalent to a presheaf category? The present paper is an expanded version of the paper [1] presented at the conference "Algebra and Coalgebra in Computer Science", CALCO 2005, in Swansea.

### 2. Varieties and covarieties

**Remark 2.1.** What is a many-sorted variety? Each of the following is a reasonable answer, depending on the generality one has in mind:

- (a) An equationally presentable category of  $\Sigma$ -algebras, where  $\Sigma$  is a finitary, S-sorted signature, see [6] for the one-sorted case, and [7,13] for the many-sorted case.
- (b) As above, but dropping "finitary". Thus, an *S-sorted signature* is a set  $\Sigma$  together with an *arity* of every operation symbol  $\sigma \in \Sigma$  of the form

$$\sigma: (s_i)_{i < n} \longrightarrow s$$
,

## Download English Version:

# https://daneshyari.com/en/article/439334

Download Persian Version:

https://daneshyari.com/article/439334

<u>Daneshyari.com</u>