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h i g h l i g h t s

• Transcendental curves and most offsets do not admit exact NURBS representation.
• We apply Hermite interpolation to achieve C2 quasi arc-length approximation.
• Two alternative tools are considered: piecewise Bézier quintics and cubic B-splines.
• The quintic displays simple control points, with locally nonparametric arrangement.
• We approximate offsets and clothoids and compare our results with existing software.
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a b s t r a c t

Transcendental curves, or in general those resulting from offsetting, do not admit an exact rational or
polynomial representation and must hence be approximated in order to incorporate them into most
commercial CAD systems.We present a simple, yet general geometric tool for polynomial approximation,
based on piecewiseHermite interpolationwith C2 quasi arc-length parameterization, a desirable property
for robotics or CNC.We take the osculatory Hermite interpolation, prescribing position, tangent direction
and curvature at the endpoints, and addquasi arc-length conditions, by imposing unit speed and vanishing
tangential acceleration. These new conditions fit naturally into this scheme, yielding a quintic with Bézier
points that turn out to display extremely simple geometry. In addition we consider a lower degree
alternative to the quintic, namely a cubic B-spline. Finally, we include two examples of applications (the
approximations of regular offsets and the clothoid) and compare our results with those from commercial
systems or existing methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Curves in CAD are usually represented by employing a polyno-
mial or rational parameterization, expressed in Bernstein basis and
its B-spline extension. However, remarkable cases, such as the off-
set or transcendental curves, do not admit this representation. In
consequence, they cannot be incorporated directly into most com-
mercial systems and must be approximated in some way. Another
expressive shortcoming of the standard rationalmodel [1–3] is that
it cannot yield curveswith exact arc-length parameterization [4,5],
aside from the trivial case of a straight line.

Most approximationmethods concentrate on generating a good
approximant in the sense of being close to a given curve, by
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guaranteeing a maximum distance. However, this requisite does
not suffice for applications requiring a smooth parameterization,
where smooth usually means at least C2 and close to the ideal arc-
length (also called intrinsic or natural parameterization). An exam-
ple where parameterization plays a key role is a trajectory whose
parameter is taken as proportional to time. A smooth parameter-
ization with approximately unit speed is desirable for CNC ma-
chining, or the definition of trajectories for robotic manipulators.
Parameterization is also of paramount importance in skinning (tra-
ditionally known as lofting) [1], where several section curves are
connected to generate a smooth surface. If the section curves are
unevenly parameterized, the resulting surfaces display poor qual-
ity. Finally, even in case a curve admits an exact rational repre-
sentation, such as the circle, a polynomial approximation may be
required to improve its parameterization.

To achieve a quasi arc-length approximation to a given curve, a
first option would be to sample points on the curve and construct
an interpolant that tries to minimize its speed deviation from
unity by some optimization technique, as done in [6,7] using a
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Fig. 1. Quasi arc-length approximation b(σ ) to a given curve c(t).

quintic spline, or in [8] with a cubic B-spline. We advocate instead
a simpler, more geometric alternative that reproduces not only
positional data but also tangential and curvature information from
the original curve, by using a modified Hermite interpolation
technique. The remaining degrees of freedomof the interpolant are
employed to impose the quasi arc-length condition, namely unit
speed and vanishing tangential acceleration at the endpoints. Thus,
our approach is aimed at representing in an approximate manner,
with the bonus of a smooth parameterization, those curves that do
not fit into the NURBS model.

The article is arranged as follows. First, in Section 2 we set the
Hermite conditions for the interpolant and consider two alterna-
tive solutions (a piecewise Bézier quintic and a cubic B-spline).
Remarkably, the quasi arc-length condition results in extremely
simple geometry for the control points. We apply our tool to ap-
proximate regular offset curves (Section 3) and the clothoid (Sec-
tion 4), a notable transcendental curve, comparing our results with
those from commercial CAD software. Finally, conclusions and ex-
tensions of this work are outlined in Section 5.

2. Quasi arc-length approximation from Hermite conditions

2.1. Quasi arc-length Hermite conditions

The Hermite-like interpolation processwe advocate is sketched
in Fig. 1. Given an original curve segment c(t), with arbitrary
parameterization over a general domain t ∈ [t0, t1], we seek a
quasi arc-length approximation b(σ ), defined over an interval σ ∈

[0, L] of length L equal to that of c(t), where σ approximates
the arc-length parameter s. Therefore, the parametric speed v(σ )
should be close to the ideal unit speed:

v(σ ) = |db/dσ | = |ḃ(σ )| ≈ 1, σ ∈ [0, L].

Another characteristic of arc-length parameterization also admits
a clear kinematic interpretation. For an arc-length curve a(s), since
ȧ(s) · ȧ(s) = 1, by differentiating this scalar product then ȧ(s) ·

ä(s) = 0. In other words, the curve is traversed with vanishing
tangential acceleration.

The key idea is to add these kinematic requirements to the cus-
tomary osculatory Hermite interpolation (Fig. 2(a)), by finding the
Hermitian interpolant b(σ ) that meets the following conditions at
the endpoints {t0, t1}:

(i) Interpolation of positions, tangents directions t0, t1, and cur-
vatures κ0, κ1 of c(t).

(ii) Unit speed v, and acceleration b̈ with vanishing tangential
component b̈t :

v(0) = v(L) = 1, b̈t(0) = b̈t(L) = 0. (1)

Condition (i) ensures that b(σ ) mimics the shape of c(t), whereas
condition (ii) imposes a quasi arc-length parameterization. In total,
6 conditions are prescribed at each endpoint, so the interpolant
must have a total of 6× 2 = 12 degrees of freedom. Using a Bézier
curve [3], this means 6 control points, i.e., a quintic.

If the approximation with a single interpolant is not satisfac-
tory, we subdivide the initial segment c(t), t ∈ [t0, t1], into several
pieces and construct a new Hermite interpolant for each piece, as
shown in Fig. 2(b), which furnishes a C2 piecewise approximation.
To generate a more compact C2 quintic B-spline [3], rather than a
piecewise Bézier representation, just knot together the Bézier seg-
ments, by following a two-step procedure:
1. Merge the approximations into a quintic B-spline curve, with

de Boor points obtained by concatenating the Bézier polygons,
and knot positions by concatenating each interval length, with
knot multiplicity 5 equal to the degree.

2. Apply twice knot removal [1,9] at each internal knot, down to
multiplicity 3.
Finally, Fig. 2 illustrates the case of a planar open segment, al-

though it clearly extends to 3D curves, or closed curves by selecting
a breakpoint corresponding to both t0 and t1.

2.2. Quintic Bézier interpolant

Next, we derive the Bézier points for the quintic interpolant,
from the conditions (i) and (ii) explained in the previous section.
Consider a quintic b(σ ), with control points {bk}

5
k=0 and domain

σ ∈ [0, L], instead of the customary unit interval. If t0 denotes
the unit tangent vector of the original curve c(t) at the endpoint
t0, then the interpolation of position and tangent, along with the
requirement of unit speed (1) at t0, yield directly the initial control
points b0, b1:

b0 = c(t0), b1 = b0 +
L
5
t0. (2)

Additionally in (ii), we impose a vanishing tangential component
for the second derivative (1). This is tantamount to saying that
b0, b1, along with the projection bt

2 of b2 onto the tangent line,
define a Bézier line segment with vanishing second derivative at
b0, and in consequence b0, b1, bt

2 lie equally spaced, as depicted
in Fig. 3. Since the distance along the tangent line between b0 and
b1 is L/5 (2), then b1 and bt

2 are also separated by L/5. Intuitively,
the Bézier interpolant b(σ ) is locally nonparametric [3], taking
as abscissa axis the tangent line (and as ordinate axis the normal
direction). Finally, the interpolation (i) of the curvature κ0 of c(t)
at t = t0 yields the distance h from b2 to bt

2:

h =
κ0L2

20
, (3)
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