Computer-Aided Design 56 (2014) 22-33

Contents lists available at ScienceDirect C@
Computer-Aided Design -

journal homepage: www.elsevier.com/locate/cad

An algebraic taxonomy for locus computation in dynamic geometry” @Cmsmrk

Miguel A. Abanades®*, Francisco BotanaP®, Antonio Montes ¢, Tomas Recio

d

2 CES Felipe II, Universidad Complutense de Madrid, Spain
b Depto. de Matemdtica Aplicada I, Universidad de Vigo, Spain

¢ Universitat Politécnica de Catalunya, Spain

4 Depto. de Matematicas, Estadistica y Computacién, Universidad de Cantabria, Spain

HIGHLIGHTS

e A taxonomy for locus computation in dynamic geometry is proposed.
e An algorithm for automatic locus computation using the Grébner Cover is described.
e A prototype of web application implementing the main algorithm is provided.

ARTICLE INFO

Article history:
Received 13 February 2014
Accepted 14 June 2014

Keywords:

Dynamic geometry

Locus computation

Parametric polynomial systems
GrobnerCover algorithm

ABSTRACT

The automatic determination of geometric loci is an important issue in Dynamic Geometry. In Dynamic
Geometry systems, it is often the case that locus determination is purely graphical, producing an output
that is not robust enough and not reusable by the given software. Parts of the true locus may be miss-
ing, and extraneous objects can be appended to it as side products of the locus determination process.
In this paper, we propose a new method for the computation, in dynamic geometry, of a locus defined
by algebraic conditions. It provides an analytic, exact description of the sought locus, making possible
a subsequent precise manipulation of this object by the system. Moreover, a complete taxonomy, cata-
loging the potentially different kinds of geometric objects arising from the locus computation procedure,
is introduced, allowing to easily discriminate these objects as either extraneous or as pertaining to the
sought locus. Our technique takes profit of the recently developed GrébnerCover algorithm. The taxon-
omy introduced can be generalized to higher dimensions, but we focus on 2-dimensional loci for classical
reasons. The proposed method is illustrated through a web-based application prototype, showing that it
has reached enough maturity as to be considered a practical option to be included in the next generation
of dynamic geometry environments.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

different positions of a point (the tracer, as point P above), corre-
sponding to the different instances of the construction determined

In general, a geometric locus is a set of points satisfying some
condition. For instance, the set of points A at a given distance d to
a specific point C is the circle centered at C of radius d. For another
simple example of a different kind, let c be a given circle with cen-
ter C, let Q be an arbitrary point on the circle and consider the locus
of midpoints P of the segments CQ, as Q glides along the circle c.

In Dynamic Geometry (DG), the term locus generally refers to
loci of this second kind: i.e. to the trajectory determined by the

* This paper has been recommended for acceptance by Ralph Martin.
* Corresponding author.
E-mail addresses: abanades@ajz.ucm.es, mabanades70@gmail.com
(M.A. Abanades).

http://dx.doi.org/10.1016/j.cad.2014.06.008
0010-4485/© 2014 Elsevier Ltd. All rights reserved.

by the different positions of a second point (the mover, such as
point Q above) along the path where it is constrained. This is the
case for the first standard DG systems developed in the late 1980s
(such as Cabri [1] and The Geometer’s Sketchpad [2]), but it is also
true for the more recent ones, such as GeoGebra [3] or Java Geom-
etry Expert [4].

Note that even simple DG constructions can involve two-
dimensional loci. Consider, for instance, two circles, each one with
a point moving on it. While the locus of their midpoint is a cir-
cular region, no current DG environment would return such set,
since the corresponding locus command cannot manage two inde-
pendent mover points. Thus, our discussion is restricted to loci in
constructions with exactly one degree of freedom. This approach
includes standard DG loci, and also constructions currently not


http://dx.doi.org/10.1016/j.cad.2014.06.008
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2014.06.008&domain=pdf
mailto:abanades@ajz.ucm.es
mailto:mabanades70@gmail.com
http://dx.doi.org/10.1016/j.cad.2014.06.008

M.A. Abdnades et al. / Computer-Aided Design 56 (2014) 22-33 23

covered by the locus function in interactive environments, such as
a circle computed through its standard definition as the locus set
of points at a given distance to a given point.

There is a wide consensus among DG developers to consider
locus computation as one of the five basic properties in the DG
paradigm (together with dynamic transformation, measurement,
free dragging and animation; see, for instance [5]).

In Section 2 we review the different approaches followed by
DG environments to address the computation of loci. We discuss
the traditional numeric method, as well as some improvements
aimed at providing a more detailed knowledge of loci, including
those coming from the field of symbolic computation. Limitations
and failures of these methods are emphasized, with a view towards
providing a benchmark to test the performance of our method,
which is illustrated by the examples in Section 5.

Our approach considers a given locus as a certain subset of the
projection set of an associated algebraic variety (see Section 3).
Many methods have been developed to obtain the Zariski closure of
such projections (Grébner bases, characteristic sets, discriminant
varieties, border polynomials, ... ). Our proposal takes advantage of
the specific features found in the recently developed GrébnerCover
algorithm (see Section 4) to

e compute the projection set, yielding a constructible set (and not
just the algebraic set given by the Zariski closure), and

e automatically discriminate the relevant components, within
the constructible set, containing the given locus.

The last property is achieved by developing an elaborated taxon-
omy for different pieces of the aforementioned projection set, and
by algorithmically assigning to each one the corresponding label
(see Section 3).

Following this taxonomy, we establish a protocol that yields
a faithful symbolic description of a given locus in terms of con-
structible sets, collecting pieces of the projection set featuring
‘good’ labels. In Section 4, a software tool implementing our
proposal is described. Finally, several examples illustrating the
method are discussed in detail in Section 5.

The provided examples show that our method overcomes
limitations found in previous proposals, and also that it allows the
computation of generalized loci in the sense of [6], see Section 5.4.

2. Locus computation in dynamic geometry: approaches and
limitations

Sutherland’s Sketchpad [7], one of the first graphic interfaces,
developed half a century ago, already included some key concepts
in the paradigm of dynamic geometry. Most remarkably, it intro-
duced the use of a light pen to select and dynamically interact with
geometric objects displayed on a screen, in a way almost identical
to mouse dragging (or finger dragging on touchscreens).

In particular, for locus computation, the approach followed by
Sketchpad is basically the same as the one present in current stan-
dard DG systems, namely, it consists of building a set of sample
locus points (a time exposure in Sutherland’s words). Below, we
briefly describe this ‘traditional’ method, as well as some attempts
towards its improvement.

2.1. The traditional method: loci by sampling

The standard approach followed by DG systems to obtain loci
is based on sampling the path of the mover. Each sample point
determines a position for the tracer, and hence a point in the locus.
This set of locus points can then be shown as a collection of pixels
on the screen, suggesting the sought locus.

On this list of locus points, most DG systems apply some simple
heuristics to join contiguous points, in order to return the locus
as a continuous, (usually) one-dimensional object, on the screen.
A first difficulty arises here, because the applied heuristics can

return aberrant loci, since small modifications in a construction can
sometimes produce significant changes of position in dependent
objects (see [8] for details).

A second problem, regardless of whether the locus is returned
as a sequence of points or as a continuous curve, is the fact that the
locus is simply a graphical representation, preventing the system
from working any further with such output. For instance, since the
equation of a curve (as a locus) is not available if this locus is ob-
tained by the traditional method, computing its tangent at a point
becomes many times very imprecise, if not impossible altogether.!

Another difficulty emerging from this numerical method is
found when trying to obtain the intersection of a locus with an-
other element in the construction. Although various solutions have
been introduced in different systems, these are essentially approx-
imate, and they often add serious inaccuracies to the construction.

2.2. Improvements to the traditional method

The search for more sophisticated ways to automatically obtain
loci has led different DG systems to consider different approaches.
We summarize here the most relevant.

2.2.1. Locus recognition by minimizing distance to algebraic curves

The first DG system to include a command to provide algebraic
information for a locus was Cabri. Since its release in 2003, Cabri
Geometry 1I plus, the current version of Cabri, incorporates a tool
for computing approximate algebraic equations for loci.

Although proper documentation of this feature is not provided
by Cabrilog, the company behind Cabri, a schematic description
of the algorithm used in the back-end can be found in [9]. It is
based on the random selection of one hundred locus points and
the computation of the best approaching polynomial curve (up to
degree six) to this collection of points. Let us point out that the
limiting factors of this approach come from sampling and fitting
points to sufficiently high accuracy. Moreover, the number of
monomials whose coefficients must be found grows as the square
of the degree.

This numerical procedure does not result, in our opinion, in a
satisfactory solution. In fact, simple locus constructions can eas-
ily give rise to algebraic curves of degree higher than 6 (see,
for instance, [10]), that would go undetected for Cabri. More-
over, no comment is attached to the locus output concerning the
(in)exactness of the algebraic information provided, hence induc-
ing a non expert user to take it as an accurate one (cf. [11], where
Cabri is shown to return a cubic as equation for the curve of Watt).

Likewise, in [12,13], the authors consider also the rendering
of some (many) sample points of a locus set constructed by ruler
and compass as the initial data of an algorithm to determine the
degree and parameters of an algebraic curve ‘resembling’ the locus.
In a second step, a collection of such curves, obtained varying the
position of basic construction points, is analyzed in order to get
more general knowledge about the involved locus.

Although impressively precise in certain situations, the algo-
rithm is prone to inaccuracies for curves of high degrees [12, p. 63].
Besides these problems, the authors report other drawbacks in
the method, that make it unsuited for efficient implementation. In
summary, we consider this a promising, but still an open approach
to automated locus determination.

2.2.2. Randomized theorem proving techniques in cinderella
In [14,15], the authors (and developers of Cinderella [16]) re-
view how their software uses automatic theorem proving to add

1 See comment by the creator of The Geometer’s Sketchpad about the construc-
tion of tangents to a locus set as the limit of secants in http://mathforum.org/kb/
message.jspa?messagelD=1095049.


http://mathforum.org/kb/message.jspa?messageID=1095049
http://mathforum.org/kb/message.jspa?messageID=1095049
http://mathforum.org/kb/message.jspa?messageID=1095049
http://mathforum.org/kb/message.jspa?messageID=1095049
http://mathforum.org/kb/message.jspa?messageID=1095049
http://mathforum.org/kb/message.jspa?messageID=1095049
http://mathforum.org/kb/message.jspa?messageID=1095049

Download English Version:

https://daneshyari.com/en/article/439441

Download Persian Version:

https://daneshyari.com/article/439441

Daneshyari.com


https://daneshyari.com/en/article/439441
https://daneshyari.com/article/439441
https://daneshyari.com

