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• The proposed method achieves optimal designs with globally controllable deflections.
• Solutions with the proposed method can maintain aerodynamic shape when deformed.
• Economic lightweight designs are achieved with a volume minimization scheme.
• Robust and effective numerical algorithms are proposed for clear 0–1 designs.
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a b s t r a c t

The conventional compliance minimization of load-carrying structures does not directly deal with
displacements that are of practical importance. In this paper, a global displacement control is realized
through topology optimization with a global constraint that sets a displacement limit on the whole
structure or certain sub-domains. A volumeminimization problem is solved by an extended evolutionary
topology optimization approach. The local displacement sensitivities are derived following a power-
law penalization material model. The global control of displacement is realized through multiple local
displacement constraints on dynamically located critical nodes. Algorithms are proposed to secure the
stability and convergence of the optimization process. Through numerical examples and by comparing
with conventional stiffness designs, it is demonstrated that the proposed approach is capable of effectively
finding optimal solutions which satisfy the global displacement control. Such solutions are of particular
importance for structural designs whose deformed shapes must comply with functioning requirements
such as aerodynamic performances.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Topology optimization is a powerful tool resulting in high struc-
tural performance with great material saving. It is capable of
speeding up the structural design process and producing reliable
solutions for structural design problems. This area has been ex-
tensively investigated in the past three decades since the modern
formulation of optimal layout theories by Prager and Rozvany [1].
Several Finite Element (FE) based methods have been developed
for topology optimization of continuum structures. One most pop-
ular technique is the Solid Isotropic Material with Penalization
(SIMP)method [2,3], where the isotropic material property in each
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element is determined by the element relative density. By penal-
izing the element relative density using a power-law interpolation
scheme, a nearly void–solid design is expected after an iterative
procedure such as the Method of Moving Asymptotes [4].

A popular group of methods for topology optimization is the
Evolutionary Structural Optimization (ESO) method and its de-
scendent versions. The ESO method was first proposed by Xie
and Steven [5,6] in the early 1990s. This original version fol-
lows a straightforward algorithm of iteratively removing ineffi-
cient material and thus drives the structure to evolve towards an
optimum. The bi-directional evolutionary structural optimization
(BESO) method was proposed as an extended version of ESO in the
late 1990s [7,8]. The BESO method allows material to be added to
the most demanding places while inefficient material is removed
simultaneously. The ESO/BESO methods use binary design vari-
ables and directly deliver void–solid solutions that are very desir-
able. The ESO/BESO methods can be easily implemented in a wide
range of engineering applications such as [9–13].
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Deflection constrained optimization problems are related with
stiffness optimization problems [14] to a large extent. These two
sets of problems are in fact equivalent under single point loaded
systems andwith deflection control at the load point in the load di-
rection. However generally, the stiffness optimal design is not the
same with the optimal deflection design. The stiffness optimiza-
tion increases the structural overall stiffness and thus the deflec-
tion is roughly reduced as an indirect effect. Very often in practice,
it is not the stiffness but the deflection over parts of or whole of
the structure that is the crucial factor. Despite vast research on
stiffness optimization, the local displacement constraint on con-
tinuum structural optimization is found in relatively less literature
such as [15–17].

For some structures such as an aircraft wing, the exterior sur-
face should undergo minimal shape change under deformation
in order to maintain the aerodynamic performance [18]; this re-
quires that the displacements of the surface shall remain within a
certain limit. In such cases, the displacements of a group of local
nodes are of concern; or more generally, the displacement limit is
addressed as a global constraint. The deflection constrained opti-
mization problemaddressed in the present paper is a global control
problem. The commonway of obtaining the displacement sensitiv-
ity is to apply a unit virtual load on the original model and get the
displacement vector from the virtual system [16]. For global dis-
placement control, the maximum deflections occur unpredictably
at different nodes through the optimization history. Therefore the
virtual loads must be built dynamically after the maximum deflec-
tions are identified in the real system at each stage; and the real
and virtual systemsmust be analysed in two subsequent FEAs. This
increases the computational cost significantly. More importantly,
numerical instabilities caused by dynamical relocation of control
nodes are hard to handle; as a consequence, stable solution con-
vergence is highly difficult to achieve.

Multiple displacement constraints optimization can be found in
literature such as [19–23]. The common strategy of this art is to
control the local displacement at pre-defined locations, usually at
the load point and in the load direction, such as in [19–21]; in other
words, a modified compliance minimization problem is actually
dealt with. Pre-defined displacement constraints are also applied
to specific structural systems such as truss structures [22,23]. The
complexity of solving multiple constraints is reduced due to the
fact that less design variables are present in the design domain.
Since the displacement control locations and directions are lim-
ited (by pre-definition or by the applied load), a genuine ‘‘global
control’’ for displacements is not realized in these methods. In
some cases, the critical displacement may occur at a location com-
pletely different from the load points; such fixed multi-constraint
approaches will not be able to tackle the maximum displacement.
Multi-constraint optimization for continuum structures is usually
a highly non-linear problem that is theoretically very difficult to
solve, especially in cases as the global displacement constraint that
controls displacements on dynamic locations.

This paper presents a global control method for displacements
of continuum structures. A topology optimization problem of vol-
ume minimization is formulated and solved by a new BESO ap-
proach. The global displacement constraint directly imposes a
maximum allowable limit for nodal displacements within the
whole domain or some user-specified sub-domains of the struc-
ture. The locations and directions of maximum nodal displace-
ments are dynamically detected, the numerical instabilities of
which are adaptively dealt with by robust stabilization algorithms.
The subsequent sections are organized as follows: Section 2 formu-
lates the topology optimization problem for global displacement
control; Section 3 presents the sensitivity calculation for displace-
ments; Section 4 is dedicated to the global displacement constraint
algorithms for stabilizing the evolution history and solution con-
vergence; the numerical implementation of the proposed method
is outlined in this section; Section 5 shows numerical examples
with discussions; the conclusions are drawn in Section 6.

2. Problem statement

The global displacement control canbe realized by confining the
maximum displacement of the structure. With the volume being
the objective function, the problem is formulated as follows.

Minimize V ,

subject to

V =

N
i=1

Vixi, xi ∈ {xmin, 1} (1)

dj ≤ dmax ≤ d∗, j = 1, . . . , L (2)

P = KU (3)

where V is the volume of the structure, Vi is the volume of the ith
element, N is the total number of elements; xi is the binary design
variable, i.e. either 1 or 0 denoting the element status of ‘‘solid’’ or
‘‘void’’; the design variable can also be treated as the element rela-
tive density [16] with a very small value such as 10−6 representing
the void status; d∗ is the maximum allowable displacement value,
dmax is the maximum displacement in the structure under loading,
and dj is the displacement of the jth element within a prescribed
domain Ωdisp where the displacement constraint is active. Eq. (3)
is the static equilibrium with P as the applied load vector, K as the
global stiffness matrix and U as the global displacement vector.

The displacements above can be addressed in any certain di-
rections, or can be treated as relative displacements simply when
some nodes in Ωdisp are fixed. Constraining the relative displace-
ments is of particular importancewhen the deformed shape is con-
cerned.

3. Displacement sensitivity calculation

3.1. Material interpolation scheme

Material interpolation schemes usually express the material
properties as a function of the design variables in order to
facilitate the sensitivity analysis. In the power-lawmaterial model
SIMP [24], the Young’s modulus of an element is determined by
the element relative density through the following penalization
formulation.

E (xi) = xpi E
0 (4)

where E0 is the Young’s modulus of the solid material and p
denotes the penalty exponent which is usually set as p ≥ 3. Note
that the Poisson’s ratio is usually assumed to be irrelevant in SIMP.
Therefore, the stiffness matrix can be expressed in a similar way as
follows.

K =


i

xpi K
0
i (5)

where K0
i denotes the stiffness matrix for the solid element,

i.e. when xi = 1.

3.2. Displacement sensitivity in axial directions

The displacement kth component can be obtained by multiply-
ing the displacement vector with a unit virtual load vector Fk, of
which the kth component is unity while all other components are
zero.

uk
= Fk · u (6)

Fk = {0, 0, . . . , 1, 0, . . .} = {f1, f2, . . . , fk, fk+1, . . .}. (7)

With the virtual load Fk and the applied load P being constant,
differentiating the kth displacement component with respect to
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