
Computer-Aided Design 56 (2014) 104–119

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Layered shape grammars✩,✩✩

Manuela Ruiz-Montiel a,∗, María-Victoria Belmonte a, Javier Boned b, Lawrence Mandow a,
Eva Millán a, Ana Reyes Badillo a, José-Luis Pérez-de-la-Cruz a

a Escuela Técnica Superior de Ingeniería Informática, Bulevar Louis Pasteur, N° 35, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
b Escuela Técnica Superior de Arquitectura, Campus de El Ejido, Universidad de Málaga, 29071, Málaga, Spain

h i g h l i g h t s

• We propose a computer-aided conceptual design system to assist modelling in the early phases of design.
• Our system enhances shape grammars with layers and logic predicates.
• Layers improve time performance and structuring of shape grammars, and predicates control the application of shape grammars.
• We have applied these new techniques to examples taken from the architectural and video games domains.

a r t i c l e i n f o

Article history:
Received 27 November 2012
Accepted 20 June 2014

Keywords:
Computational design
Computer-aided conceptual design
Shape grammars
Architecture
Video games

a b s t r a c t

In this article we propose a computer-aided conceptual design system to assist modelling at the early
stages of design. More precisely, we address the problem of providing the designer with design alterna-
tives that can be used as starting points of the design process. To guide the generation of such alternatives
according to a given set of design requirements, the designer can express both visual knowledge in the
form of basic geometric transformation rules, and also logic constraints that guide the modelling process.
Our approach is based on the formalism of shape grammars, and supplements the basic algorithms with
procedures that integrate logic design constraints and goals. Additionally, we introduce a layered scheme
for shape grammars that can greatly reduce the computational cost of shape generation. Shape grammars,
constraints, goals and layers can be handled through a graphic environment. We illustrate the function-
alities of ShaDe through two use cases taken from the architectural design and video games domains, and
also evaluate the performance of the system.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Computer-aided design tools traditionally help designers in
many tasks, such as description, documentation and visualization
of their projects. However, these tools can also play a more active
role in creative aspects of the design process. Some approaches
automatically produce highly polished visualizations of designs
to be used in movies, video games or computer graphics appli-
cations [1–3]. Others offer support in the early, conceptual stages
of design, when the involved shapes and ideas are still malleable.

✩ This work is partially funded by: grant TIN2009-14179 (Spanish Government,
Plan Nacional de I+D+i). Manuela Ruiz-Montiel is funded by the SpanishMinistry of
Education through the National F.P.U. Program.
✩✩ This paper has been recommended for acceptance by Graham Jared.
∗ Corresponding author. Tel.: +34 952132863.

E-mail address:mruiz@lcc.uma.es (M. Ruiz-Montiel).

These last assistants are usually called computer-aided conceptual
design (CACD) tools [4–6]. Assistant systems that evaluate, propose
and allow exploration of different conceptual design alternatives
can be of great help in the early stages of the design process [7–9].

A number of CACD tools have been developed to date. They
share the need for some kind of expert knowledge specification, in
the form of design requirements and performance criteria, that can
be used to evaluate solutions or to guide generation/exploration
processes. Approaches range from visual methods, like shape
grammars [10], to more explicit techniques such as semantic
models [11] or object-oriented relations [12].

In this paper we present two main contributions. In the first
place, we propose a CACD system to help in modelling at the
early stages of design. The system provides the designer with
design alternatives that aid to overcome the blank page syndrome.
This condition appears when facing a new design project and
the absence of starting points entails a lack of inspiration. The
alternatives provided can be used as starting points to be further

http://dx.doi.org/10.1016/j.cad.2014.06.012
0010-4485/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cad.2014.06.012
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2014.06.012&domain=pdf
mailto:mruiz@lcc.uma.es
http://dx.doi.org/10.1016/j.cad.2014.06.012


M. Ruiz-Montiel et al. / Computer-Aided Design 56 (2014) 104–119 105

completed and polished by the human designer. To guide the
generation of such alternatives according to a given set of design
requirements, the designer can express both visual knowledge in
the form of basic geometric transformation rules, and also by logic
requirements. This combination takes advantage of the fact that
some requirements are better described using logic predicates (in
the form of constraints or goals) that are evaluated during the
generation process, in the form or constraints or goals. As far as we
know, this combined specification procedure is a novel approach to
CACD. Our approach is based on the formalism of shape grammars,
supplementing the basic algorithmswith procedures that integrate
logic predicates.

In the second place, we propose to decompose shape grammars
into layers. This reduces the computational cost of algorithms
for grammar interpretation, and can greatly speed up grammar
execution. Moreover, layers can be used to better organize the
process, arranging design elements in groups that can be later
visualized separately.

These formalisms and algorithms to represent and process
rules, constraints, goals and layers, have been implemented and
integrated in ShaDe, a new CACD tool built on the commercial CAD
software SketchUp. ShaDe provides a general editor and interpreter
of 2D shape rules, logic predicates (constraints and goals), and
layers. Rules are expressed in 2D, but height information can be
associated to each layer, allowing to visualize the final drawings in
three dimensions. We illustrate the modelling process with ShaDe
through an example taken from the architectural field.

The rest of the paper is structured as follows: in Section 2
we provide the necessary background on shape grammars and
discuss briefly some related prior work on CACD tools; then, in
Section 3 we present the new concepts and algorithms that allow
the representation and handling of layers and constraints in a
grammar. In Section 4wedescribe ShaDe, the software tool thatwe
have developed based on the aforementioned ideas. To illustrate
the capabilities of the method and the tool, in Sections 5 and 6
we develop two examples in the field of architectural design and
the area of strategy/simulation video games. Section 7 presents a
quantitative evaluation. Finally, in Section 8 some conclusions are
drawn and future continuations of this research are outlined.

2. Antecedents

2.1. Shape grammars

A shape grammar is a production system in which shapes are
generated by means of replacement rules. The concepts of shape
rule and shape grammar were introduced by Stiny and Gips [10]. In
this sectionwe gather some necessary definitions [13], and explain
the role that shape grammars have played in computational design
over the last decades.

A shape grammar is a 4-tuple ⟨S, L, R, I⟩ where:

• S is a finite set of shapes
• L is a finite set of symbols
• R is a finite set of rules α → β , where α is a non-empty labelled

shape and β is a labelled shape
• I is a non-empty labelled shape, called initial shape or axiom.

A shape is defined by a finite set of distinct lines that cannot
be combined to form another line, that is, they are maximal. The
representation of a shape is thus unique. A labelled shape consists
of two parts: a shape and a set of labelled points. A labelled point
(p, A) is a point pwith a symbol A. A labelled shape σ is an ordered
pair σ = ⟨s, P⟩ where s is a shape and P is a finite set of labelled
points. A segment or line l, l = {p1, p2} is defined by any pair of
distinct points p1 and p2, the so-called end points of the line.

A rule α → β applies to a shape γ when there is a transfor-
mation τ such that τ(α) is a sub-shape of γ , that is, τ(α) ≤ γ

(a labelled shape s1 is sub-shape of another labelled shape s2 if and
only if every line and every labelled point of s1 is in s2). τ can be any
general geometric transformation. In particular, we will use trans-
lations, rotations and regular scales. The sub-shape recognition
process needs at least three distinguished points (that can be labels
or intersections between segments) in the left side of every rule, as
well as in the current design, in order to properly determine τ .

The labelled shape produced by the application of a rule α →

β to a labelled shape γ under transformation τ is given by the
expression γ − τ(α) + τ(β). This labelled shape is obtained by
substituting the appearance of τ(α) inside γ with τ(β). In Fig. 1
we can see a rule and one derivation, that is, a sequence of shapes
generated by successive applications of the rule.

Shape grammars have been used for numerous recreation and
generation tasks related to decorative arts, paintings, architectural
plans and engineering design [14]. This wide usage relies on the
power of shape grammars to capture and recreate heterogeneous
design styles. Indeed, many authors have pointed out the
advantages of shape grammars as a visual design framework. For
example, Stiny showed that they have the potential of producing
any possible shape [15]. They are also a compact method because
few rules can yield such complex and unexpected shapes [16].
More specifically, from the point of view of generative CAD tools,
it has been noticed [17] that grammar-based systems can easily
automate design and thus allow a great deal of exploration. Shape
grammars have been suggested as a geometric design framework
due to some desirable properties [18], such as their parametric
(instead of symbolic) nature and their maximal unique shape
representation.

2.2. Related CACD tools

In this section we provide an overview of several CACD tools.
Some of these tools have provided support from an evaluative
perspective. Kraft and Nagl [8] developed prototype software
providing a visual knowledge specification language for conceptual
design. Graph-based domain ontologies define concepts and
relations between them, as well as design rules. The designer can
use the concepts and relations of this ontology in order tomanually
instantiate sketches of conceptual buildings (in the context of this
work, a sketch is not a shape, but a graph of semantic objects that
formalizes the different features of the design idea). The created
sketch can be checked against the rule base specified inside the
ontology. Pauwels et al. use Semantic Web technologies in order
to formalize rules about building performance [11]. The process
of defining a design concept would be similar to the one in the
work of Kraft and Nagl, using semantic web technologies instead
of graph-based techniques. In both works, design concepts are not
geometric objects, but explicit, symbolic descriptions about their
features. Grabska et al. [19] have developed prototype software
to support architectural conceptual design that extracts symbolic
information from graphical sketches drawn by the designer. It
provides a form of visual requirement specification by means of
arrows that relate rooms of different floors. The extracted symbolic
information can be used to define logic rules that will check the
validity of the sketches drawn by the designer.

Other CACD tools have focused on generation capabilities. A
considerable part of the corpus of generative CACD tools are shape
grammar interpreters. Chau et al. [14] compared 21 implementa-
tions up to 2004. More recently, McKay et al. [9] gathered some of
the most relevant interpreters up to 2011. In this last review, the
systems are evaluated according to a set of requirements for shape
grammar implementations derived from theworks ofGips [20] and
Chau et al. [14]. Most of the evaluated tools are generic in the sense
that they are not aimed at a particular field of design, and provide



Download English Version:

https://daneshyari.com/en/article/439447

Download Persian Version:

https://daneshyari.com/article/439447

Daneshyari.com

https://daneshyari.com/en/article/439447
https://daneshyari.com/article/439447
https://daneshyari.com

