
Computer-Aided Design 46 (2014) 37–44

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

A parallel algorithm for improving the maximal property of Poisson
disk sampling
Xiang Ying, Zhenhua Li, Ying He ∗
School of Computer Engineering, Nanyang Technological University, Singapore

h i g h l i g h t s

• A simple algorithm for improving the maximal property of Poisson disk sampling.
• The algorithm is fully parallel and can be implemented on the GPU.
• It works for 2D and 3D, and can also be extended to surface in an intrinsic manner.

a r t i c l e i n f o

Keywords:
Poisson disk sampling
Maximal sampling
Parallel algorithm
GPU
Exponential map

a b s t r a c t

This paper presents a simple yet effective algorithm to improve an arbitrary Poisson disk sampling to
reach the maximal property, i.e., no more Poisson disk can be inserted. Taking a non-maximal Poisson
disk sampling as input, our algorithm efficiently detects the regions allowing additional samples and
then generates Poisson disks in these regions. The key idea is to convert the complicated plane or space
searching problem into a simple searching on circles or spheres, which is one dimensional lower than
the original sampling domain. Our algorithm is memory efficient and flexible, which generates maximal
Poisson disk sampling in an arbitrary 2D polygon or 3D polyhedron. Moreover, our parallel algorithm can
be extended from the Euclidean space to curved surfaces in an intrinsic manner. Thanks to its parallel
structure, our method can be implemented easily on modern graphics hardware. We have observed
significance performance improvement compared to the existing techniques.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Poisson disk sampling is a process to distribute all samples that
are uniformly and randomly located. It also requires a minimum
distance apart from any two samples. Let D denote the sample
domain. Poisson disk sampling is a set X = {xi ∈ D; i =
1, 2, . . . ,N} of N samples having the properties

∀xi ∈ X, ∀M ⊆ D : P(xi ∈ M) =


M
dx, (1)

∀xi, xj ∈ X : ∥xi − xj∥ ≥ 2r, (2)

where P(·) is a probability. A Poisson disk sampling is called
maximal if there is no room to insert an additional sample, i.e.

∀x ∈ D, ∃xi ∈ X : ∥x− xi∥ ≤ 2r. (3)

Due to its excellent spatial and spectral properties, Poisson disk
sampling is widely used in computer graphics and visualization,

∗ Corresponding author. Tel.: +65 6514 1008.
E-mail addresses: yingxiang@ntu.edu.sg (X. Ying), lizh0021@e.ntu.edu.sg (Z. Li),

yhe@ntu.edu.sg (Y. He).

such as anti-aliasing [1], global illumination [2], non-photorealistic
rendering [3], remeshing [4], texture synthesis [5], vector field
visualization [6], etc.

Dart throwing, proposed by Dippé and Wold [7], is the first
accurate approach to generate Poisson disk patterns in Rn. How-
ever, this brute-force approach is impractical and inefficient, since
a large number of samples are involved in the attempt but only a
small percentage of them are eventually inserted into the distribu-
tion. Since then, many approaches have been proposed to improve
the performance of the dart throwing algorithm, e.g., jittered sam-
pling [8], spatial data structures [9,10], procedure tiling [11–13],
and hierarchical sampling [14,15]. Some algorithms [16,10,17] are
able to generatemaximal Poisson disk sampling. Although they are
faster than the dart throwing algorithm, these algorithms are still
sequential in the sense that the sample or dart is drawn one by one.

In contrast to many sequential algorithms, there are rela-
tively few works for computing Poisson disk sampling in paral-
lel. Wei [18] pioneered the phase groupmethod, which subdivides
the sample domain into grid cells and draws samples concurrently
frommultiple cells that are sufficiently far apart to avoid conflicts.
Ying et al. [19,20] presented a technique to parallel the dart throw-
ing by assigning each sample candidate a random and unique
priority that is unbiased with regard to the distribution. Hence,

0010-4485/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cad.2013.08.016

http://dx.doi.org/10.1016/j.cad.2013.08.016
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2013.08.016&domain=pdf
mailto:yingxiang@ntu.edu.sg
mailto:lizh0021@e.ntu.edu.sg
mailto:yhe@ntu.edu.sg
http://dx.doi.org/10.1016/j.cad.2013.08.016


38 X. Ying et al. / Computer-Aided Design 46 (2014) 37–44

multiple threads can process the candidates simultaneously and
resolve conflicts by checking the given priority values. By taking
advantage of the modern GPU, these parallel techniques signif-
icantly outperform the sequential algorithms. However, none of
these parallel algorithms is maximal, i.e., when the algorithm ter-
minates, there is still room for additional samples.

Ebeida et al. [21] presented a parallel algorithm to generate
maximal Poisson disk sampling in Rd. Their idea is to maintain
a flat quadtree structure to keep track of the uncovered region.
Their algorithm is theoretically sound and also practical for dimen-
sion up to 3 on the GPU. However, compared to the other paral-
lel algorithms, Ebeida et al.’s approach requires large memory due
to maintaining all the active cells, which diminishes its applica-
tion to large scale models due to the limited memory on graphics
card. Furthermore, it is not clear whether their flat quadtree data
structure can be extended to curved surfaces. Recently, Yan and
Wonka [22] studied the geometry of gaps in disk sets and then pro-
posed efficient algorithms to detect and update these gaps when
the Poisson disk distribution is updated (e.g., disks are inserted,
deleted, moved or when their radii are changed). Yan andWonka’s
algorithm can fill in the gaps in parallel. Moreover, their algorithm
is theoretically sound and can generate maximal Poisson disk dis-
tributions with varying radii in the Euclidean space of arbitrary di-
mension or on a manifold.

On the other hand, there are many Poisson disk sampling algo-
rithms on surfaces. However, very few of them could produce the
maximal distribution. Due to the fundamental difference between
the Euclidean space and the curved surface, efficiently computing a
maximal Poisson disk sampling on arbitrary surfaces is still a chal-
lenging problem. Fu et al.’s method [4] produces the maximal
distribution on surfaces at a very low performance (only 30–50
samples per second). Bowers et al.’s parallel algorithm [23] is able
to generate 180k samples per second on the Nvidia GTX580, but
their algorithm is extrinsic and approximate. Ying et al. [20] pro-
posed an intrinsic, parallel and accurate algorithm which can pro-
duce 350k samples per second. However, neither [23] nor [20]
could generate a maximal distribution.

This paper presents a simple yet effective technique to com-
pute maximal Poisson disk sampling in R2 and R3. Taking a non-
maximal Poisson disk sampling as input, our algorithm efficiently
detects the regions allowing additional samples and then generates
Poisson disks in these regions. The key idea is to convert the com-
plicated plane or space searching problem into a simple searching
on circles or spheres,which is one dimensional lower than the orig-
inal sampling domain. Compared to the existing maximal Poisson
disk sampling algorithm, ourmethod is memory efficient, very fast
and fully parallel, which can generate more than 8million samples
per second in R2 and 0.55 million samples per second in R3 on the
Nvidia GTX580. Furthermore, our algorithm can also be extended
to surfaces in an intrinsic manner.

The remaining of this paper is organized as follows: we first
describe an interesting geodesic problem in Section 2. The solution
of such a problem lays the foundation of our algorithm. Then
we present our parallel algorithm in Section 3 followed by the
experimental results and analysis in Section 4. We compare our
method to the existing techniques in Section 5 and conclude the
paper in Section 6.

2. A geometric problem

Before introducing our algorithm, we discuss an interesting
geometric problem, which is closely related to maximal Poisson
disk sampling.
Problem statement. Consider a set of circles Ci = (ci, ri) in R2 (resp.
spheres Si inR3) covering a finite domainD ⊂ R2 (resp.R3), where
ci and ri are the center and radius respectively. Any two circles

Fig. 1. (a) A ‘‘forbidden’’ arc p1p2 (in red) with two ending angles [α, β]. (b) When
multiple circles C ′i intersect at one point p, such a point p is a degenerate but
‘‘permitted’’ arc, which allows insertion of a circle with radius r . (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

(resp. spheres) do not intersect. Canwe insert a circle (resp. sphere)
of radius r into D without intersecting the existing circles (resp.
spheres)?
Solution in 2D. For each circle Ci = (ci, ri), we draw a new circle
C ′i = (ci, ri + r) with radius ri + r . Note that these new circles C ′i
may intersect due to the increased radius.

Now consider two circles C ′1 and C ′2 intersecting at p1 and p2 (see
Fig. 1, where Ci is in solid black and C ′i in dashed blue). Clearly, we
cannot insert an additional circle of radius r in the region formed
by C ′1


C ′2, since such a circle will intersect C1 or C2. Observe that

the red arc p1p2 of circle C ′1 is completely inside circle C ′2. We call
this arc ‘‘forbidden’’ since no circle of radius r can be inserted into
C ′1


C ′2. Other circles C

′

i can also generate forbidden arcs on C ′1 if
they intersect C ′1. Then we define the ‘‘permitted’’ arc(s) on C ′1 as
the complement of all forbidden arcs.

Thus, in order to find the room to insert an additional circle near
C1, it is equivalent to test whether the circle C ′1 has at least one
permitted arc.

Take an arbitrary unit vector −→u as the reference axis for circle
C ′1. Then we compute the angles α = angle between −→u and −−→c1p1
and β = angle between −→u and −−→c1p2. The forbidden arc p1p2 is
given by (α, β) if the reference axis −→u does not intersect the
arc. Otherwise, we split it into two small arcs, i.e., (−ϵ, β) and
(α, 2π + ϵ), where ϵ = 1×10−8 is a small value. Fig. 1(b) shows a
special case where multiple circles intersect at one point p. In such
a situation, a circle of radius r can be inserted at p; thus, the point
p is a degenerate but permitted arc. The detailed algorithm to find
all permitted arcs is documented in Algorithm 1.
Solution in 3D. The 3D problem can be solved by using the above
2D results. For each sphere Si = (ci, ri), we make a new sphere
S ′i = (ci, ri + r). Due to the increased radius, the spheres may
intersect each other. Similar to the 2D case, if two spheres S ′i and
S ′j intersect, we cannot insert a sphere with radius r in between Si
and Sj.

Observe that the intersection of two spheres is a circle, which
bounds a disc on each sphere. Similar to the 2D case, we call such
a disc forbidden, since it does not allow inserting an additional
sphere. Also, the complement of all forbidden discs is called
‘‘permitted’’. Note that the boundary of the permitted region is
a set of permitted arcs. Thus, in order to find the room to insert
an additional sphere near Si, it is equivalent to test whether the
permitted region on S ′i is non-empty.

This permitted region searching problem, on the other hand,
can be formulated as finding permitted arcs. As shown in Fig. 2,
let C1 = S ′i


S ′1 and c2 = S ′i


S ′2 be two intersecting circles on S ′i .

And C1 and C2 also intersect at points p1, p2. Thus, we can use the
permitted arcs technique to find the permitted region, i.e., a region
which is not enclosed by any circles. Therefore, by searching all
permitted regions on all spheres, we can find the available spaces
for inserting new spheres.



Download English Version:

https://daneshyari.com/en/article/439455

Download Persian Version:

https://daneshyari.com/article/439455

Daneshyari.com

https://daneshyari.com/en/article/439455
https://daneshyari.com/article/439455
https://daneshyari.com

