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h i g h l i g h t s

• Isogeometric analysis on triangulation of a domain bounded by NURBS curves.
• Geometry and solution represented by bivariate splines in Bernstein–Bézier form.
• Approach to construct parametric domain and construct C r -smooth basis functions.
• Applicable to complex topologies and allow highly localized refinement.
• Isogeometric analysis of linear elasticity and advection–diffusion demonstrated.
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a b s t r a c t

We present a method for isogeometric analysis on the triangulation of a domain bounded by NURBS
curves. In this method, both the geometry and the physical field are represented by bivariate splines in
Bernstein–Bézier form over the triangulation. We describe a set of procedures to construct a parametric
domain and its triangulation from a given physical domain, construct C r -smooth basis functions over
the domain, and establish a rational Triangular Bézier Spline (rTBS) based geometric mapping that
C r -smoothly maps the parametric domain to the physical domain and exactly recovers the NURBS
boundaries at the domain boundary. As a result, this approach can achieve automated meshing of objects
with complex topologies and allow highly localized refinement. Isogeometric analysis of problems from
linear elasticity and advection–diffusion analysis is demonstrated.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Isogeometric analysis is a technique of numerical analysis
that uses basis functions commonly found in CAD geometries to
represent both geometry and physical fields in the solution of
problems governed by partial differential equations (PDE) [1,2].
Non-uniform rational B-splines (NURBS) are the de facto standard
for geometric representation in CAD systems. The use of a NURBS-
compatible basis in the solution of physical problems therefore
leads to the elimination of geometric-approximation error in even
the coarsestmesh. The increased continuity of the NURBS basis has
led to significant numerical advantages over traditional Lagrange
polynomials and other C0 inter-element continuity based finite
element analysis, e.g. improved convergence rate on a per degree-
of-freedom (DOF) basis [2]. However, NURBS-based isogeometric
analysis also faces challenges. For example, it is challenging to
automatically construct NURBS-based volumetric representation
of a complex physical domain since CAD geometries only contain
boundary representation of the domain; Further, the tensor-
product structure of NURBS makes it harder to perform local mesh
refinement as is commonly desired during analysis.
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Recently, significant progress has been made in addressing
these challenges. For example, the swept volume [3], harmonic
functions [4], multi-block [5], and Coons patch [6] techniques have
recently been developed to construct NURBS representations of
volumetric domains. To extend NURBS representation to complex
topologies while also allowing for adaptive refinement, T -splines
[7] have been used in isogeometric analysis [8–10]. Methods for
constructing T -spline based parametrization of the domain are be-
ing developed [11,12]. Among alternate isogeometric represen-
tation and analysis techniques under development, a technique
based on subdivision solids has recently been proposed [13]. Fur-
ther, boundary-integral based isogeometric analysis techniques
[14,15] seek to effectively bypass the need for volumetric parame-
trization.

We present an alternative approach to isogeometric analysis
with the goal of achieving automatic discretization of the phys-
ical domain while eliminating geometric approximation error,
allowing local refinement of the discretization and making it
applicable to complex topologies. Our approach is based on trian-
gulations of physical domains where both the geometry and phys-
ical field are represented by C r -continuous multivariate splines
in their Bernstein–Bézier form. In this paper, we restrict our at-
tention to two-dimensional problems and bivariate splines. In our
method, we first construct a polygonal parametric domain Ω that
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mimics the NURBS-bounded physical domain Ω . We then obtain
a triangulation T of Ω , on which a Bernstein–Bézier form of a
C r bivariate spline basis is constructed. We use this basis to con-
struct globally C r -smooth geometric mapping that maps the para-
metric domain Ω to the physical domain Ω with exact recovery
of the NURBS boundary. When exceptional vertices/edges are al-
lowed, this approach also ensures global bijectivity of themapping.
We demonstrate our analysis results for linear elasticity and
advection–diffusion problems on problems which are character-
istically non-trivial to mesh by other methods. Since robust tech-
nologies for automatic triangulation with local refinement are
currently available, our approach is fully automated, is applicable
to objects of complex topologies and allows for local refinement
during in the course of analysis.

Our work differs from prior work on multivariate-spline based
analysis [16,17] in that we explicitly construct C r -smooth bases
and use rational Triangular Bézier Splines (rTBS) to ensure the ex-
act recovery of theNURBS boundary. Ourwork also differs from the
recent developed non-uniform rational Powell–Sabin splines for
isogeometric analysis [18,19]. Our approach is more general since
general C r spline spaces are considered. Further, we use Bézier or-
dinates and the corresponding basis functions to represent PDE so-
lutions. Therefore, our Béizer ordinates based representation has
direct geometric interpretation. In contrast, the approach [18,19]
uses Powell–Sabin triangles and the corresponding normalized
Powell–Sabin B-splines to represent the solutions. However,
Powell–Sabin triangles are not unique for a given triangulation
although the normalized Powell–Sabin B-splines have nice com-
putational properties such as negativity. Further, our approach is
applicable to macroelements or non-macroelements alike and the
approach in [18,19] is an macroelement based approach.

Fig. 1 gives a schematic overview of our proposed approach. A
C r continuous basis ψ(ξ) is constructed over the parametric do-
main Ω . The basis is used to construct an rTBS based geometric
map G(ξ) so that it maps a point ξ ∈ R2 in parametric domain Ω
to a point x ∈ R2 in the physical domainΩ . The same basis is also
used to approximate physical field u(ξ). Composing the inverse of
geometric map and the field approximation, u◦G−1, defines a field
on the physical domain. Quadrature in analysis integration is per-
formed via local barycentric coordinates on the parent triangle.

The remainder of this paper is organized as follows: Section 2
introduces necessary background concepts; Section 3 presents our
discretization method—smooth rTBS-based discretization of the
physical domain; Section 4 discusses the details of smooth rTBS-
based isogeometric analysis; Section 5 contains our numerical
results; In Section 6 we present our conclusions.

2. Background

In this section we briefly introduce the Bézier curve, non-
uniform rational B-splines (NURBS) and triangular Béziers. We
then discuss the splines over triangulations and the Clough–Tocher
and Powell–Sabin splits. This introduction aims to make the paper
self-contained and to clarify notation for subsequent sections. For
further reading on Bézier curves, B-splines, and Bézier triangles,
see [20], for splines on triangulations, see [21], and for isogeometric
analysis, see [2].

2.1. Bézier and NURBS curves

CAD geometry is usually defined by a NURBS represented
boundary. Each knot span of a NURBS curve corresponds to a Bézier
curve. A Bézier curve is defined through Bernstein basis functions.
A degree-d Bernstein polynomial is defined explicitly by

Bi,d(ξ) =


d
i


ξ i(1 − ξ)d−i, ξ ∈ [0, 1], (1)

Fig. 1. Isogeometric analysis on triangulations.

where ξ is the parameter. A degree-d Bézier curve is defined in
terms of d + 1 Bernstein basis functions and the corresponding
control points pi = (x1i, x2 i) as

c(ξ) =

d
i=0

piBi,d(ξ). (2)

A NURBS curve of degree-d is defined as follows

c(ξ) =

n
i=0

Ni,d(ξ)wipi

n
j=0

Nj,d(ξ)wj

, (3)

where {pi} = (xi1 , xi2) represents the coordinate positions of a set
of i = 0, . . . , n control points, {wi} is the corresponding weight,
and {Ni,d} is the degree-dB-spline basis function, defined by a knot
vectorΞ = {ξ0, ξ1, . . . , ξn+d+1}. Through repeated knot insertion,
the Bézier representation for each knot span of a NURBS curve can
be obtained.

2.2. Bézier triangles

Bézier triangles are based on bivariate Bernstein polynomials.
Let a triangle τ with vertices v1, v2, v3 ∈ R2 and the barycentric
coordinate of a point ξ ∈ R2 with respect to the triangle be
{γ1, γ2, γ3}. A degree-d bivariate Bernstein polynomial is defined
as

Bi,d(ξ) =
d!

i!j!k!
γ i
1γ

j
2γ

k
3 ; |i| = d, (4)

where i represents a triple index (i, j, k). A triangular Bézier patch
is defined as

b(ξ) =


i+j+k=d

Bi,d(ξ)pi, (5)

with pi represents a triangular array of control points. A rational
Bézier triangle can be defined as

b(ξ) =


|i|=d

wipiBi,d(ξ)
|i|=d

wiBi,d(ξ)
, (6)

wherewi are the weights associated with the control points pi.
The bivariate Bernstein polynomials can be used to define a

polynomial function f (ξ) of degree-d over the triangle {v1, v2, v3}
as:

f (ξ) =


i+j+k=d

bijkBijk,d(γ) (7)
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