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a b s t r a c t

Functional composition can be computed efficiently, robustly, and precisely over polynomials and piece-
wise polynomials represented in the Bézier and B-spline forms (DeRose et al., 1993) [13], (Elber, 1992) [3],
(Liu and Mann, 1997) [14]. Nevertheless, the applications of functional composition in geometric model-
ing have been quite limited. In this work, as a testimony to the value of functional composition, we first
recall simple applications to curve–curve and curve–surface composition, and then more extensively ex-
plore the surface–surface composition (SSC) in geometric modeling. We demonstrate the great potential
of functional composition using several non-trivial examples of the SSC operator, in geometric model-
ing applications: blending by composition, untrimming by composition, and surface distance bounds by
composition.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Splines are a common representation in virtually almost all
computer aided geometric design (CAGD) systems. The Bézier and
NURBS representations almost solely govern the geometricmodel-
ing industry. Excellent techniques to create and modify these rep-
resentations have been developed in the CAGD community, which
made these representations so common. On the other hand, the
Bézier and NURBS representations are often too complex to be
handled precisely. Boolean operations and intersections [1] and/or
generic operations such as offsets [2] are not closed in the Bézier
and NURBS representations and thus should be approximated, en-
tailing all the difficulties such approximations induce.

To alleviate some of these difficulties, Elber [3] introduced sym-
bolic tools, which mean computational schemes that allow one to
evaluate a symbolic expression once a real numeric input is pro-
vided. For example, given two parametric curves C1(u) and C2(v),
the simultaneous zeros of the following two expressions:
C1(u) − C2(v),

dC1(u)
du


= 0,

C1(u) − C2(v),
dC2(v)

dv


= 0, (1)

prescribes one type of distance-extrema event, which is character-
ized by a bi-normal line (a line normal to both curves at its intersec-
tion points with the two curves). Given two Bézier and/or B-spline

∗ Corresponding author.
E-mail address: gershon@cs.technion.ac.il (G. Elber).

curves C1(u) and C2(v), the numeric representations of C1(u) and
C2(v) can be plugged into Eq. (1), producing a non-linear system
of two equations and two unknowns, whose solution(s) detects all
the mutual bi-normals of C1(u) and C2(v).

Symbolic manipulation tools have been used in the last cou-
ple of decades, offering robust solutions to many computational
queries regarding freeform curves and surfaces. With the aid of al-
gebraic operators to add, subtract, andmultiply splines [4,3,5], and
a solver for systems of non-linear constraints [6,7], robust compu-
tation methods were developed, for example, to evaluate offsets
and sweeps [8,2], to construct bisectors and Voronoi regions [9,10],
and to measure minimal and Hausdorff distances [11,12] between
freeform curves and surfaces.

The composition operator is one additional symbolic algebraic
tool that is worth exploring more extensively. The composition is
a well defined operation. Techniques to evaluate the composition
of freeforms, directly in the spline (Bézier or B-spline) domains
are well-known [13,3,14]. Nevertheless, this operator has not been
fully exploited in geometric modeling to its great potential. In
particular, surface–surface composition (SSC) has rarely been used.
In this work, we show that the composition operator has a lot to
offer in geometricmodeling.We first discuss the existing examples
and applications for curve–curve composition, curve–surface
composition, and then focus on surface–surface composition (SSC).

The rest of this work is organized as follows. In Section 2, pre-
vious work on the computation of the composition operator is laid
out as well as some discussion on the previous uses of this oper-
ator. In Section 3, we show how SSC can be used to create a gen-
eral blending between two surfaces and with arbitrary continuity.
In Section 4, we present a paradigm that can convert trimmed
surfaces to regular tensor product patches, again using SSC, and
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Section 5 considers the question of bounding the maximum dis-
tance between two adjacent patches that are parameterized differ-
ently and exploits SSC tomuch improve on the established distance
bound. Then, we conclude in Section 6.

2. Previous work

The composition of two spline functions, in the Bézier and
B-spline bases, was first discussed in [13,3]. DeRose et al. [13] re-
duced the problem of function composition to Blossoming evalua-
tions, and made the observation that surface–surface composition
in the B-spline domain can create non-rectangular regions, impos-
ing amajor barrier on the computation. Elber [3] reduced the prob-
lem to basic symbolic operations such as additions and products of
splines, and extended the composition operator to both the poly-
nomial Bézier and piecewise polynomial B-spline domains. In [14],
an effort was made into further optimizing the composition com-
putation of two polynomials [13].

Even before the results [13,3], Sederberg [15] proposed trivari-
ate Bézier volumes as a deformation tool. The original proposal of
Sederberg [15] was to map control points and so as to approxi-
mate the deformation. There are also some previous results devel-
oped for the precise freeform deformation using the composition
operator such as Feng and Peng [16], where the composition com-
putation was resolved by posing it as a polynomial interpolation
problem. Surazhsky and Elber [17] is another example of precise1
deformation using the composition operator. They employed the
curve–surface composition for a precise text deformation of piece-
wise Bézier outline fonts, where the underlying deformation func-
tions were represented as bivariate B-splines.

In the last couple of decades, other results were also developed
for various specific applications using the composition operator.
For example, using the surface–surface composition for bilinear
patches, Feng and Peng [18] showed how to transform a rectan-
gular (tensor product) patch into two triangular patches and how
to convert a triangular patch into three rectangular ones, a problem
that was also examined by [13].

Elber [19] used the curve–curve composition to normalize
vector fields in general, and to approximate piecewise polyno-
mial arc-length curves in specific. Moreover, Cohen et al. [20]
employed the curve–curve composition for the elimination of
self-intersections in planar ruled surfaces and in metamorphosis
between two curves. Kim and Elber [21] developed a precise G1

surface blending scheme that exploits the curve–surface composi-
tion to precisely locate the rail curves of the blending surface over
the given input surfaces.

The coming sections of this work focus on the surface–surface
composition (SSC) and present results in a variety of applications.

3. Blending by composition

Surface rounding and/or blending is awell-knownproblem that
has been extensively investigated inmany previous results [21,22].
Nevertheless, few results offer blending algorithms that are pre-
cise to within machine precision. Typical blending solutions de-
rive the rail curves of the blend (the two curves between which
the blending surface is defined) as a solution of some offset or
as a surface–surface intersection (SSI) operation, which produces
rail curves that are within the tolerance of offset or SSI computa-
tion. The error is typically much larger than that of machine preci-
sion. One exception is the approach of Kim and Elber [21], where
the rail curves are specified in the parametric domains of the two

1 In this work the term precise denotesmachine precision.

input surfaces, S1(u, v) and S2(r, t). In this approach, using the
curve–surface composition, the rail curves (and the tangent field)
over S1 and S2 can be located within machine precision.

The SSC operations can be used to derive precise blending
and/or rounding surfaces with a continuity of arbitrary order. Con-
sider the two surfaces S1(u, v) and S2(r, t) and the two rail curves
C1(a) = (u(a), v(a)) and C2(b) = (r(b), t(b)) in the parametric
domains of S1 and S2.

Assume that C1(a) and C2(b) are interior to the respective do-
mains of S1 and S2 so that a small offset approximation of C1(a) and
C2(b) remains interior to S1 and S2.2 Then, the following procedure
will generate such a precise Gk continuous blending surface:

Algorithm 1: Building a precise Gk blending surface
between two general rail curves C1(a) in S1(u, v) domain
and C2(b) in S2(r, t) domain:
input : S1(u, v), first surface to blend;

S2(r, t), second surface to blend;
C1(a) = (u(a), v(a)), rail curve in S1;
C2(b) = (r(b), t(b)), rail curve in S2;
od, offset amount to apply to C1 and C2;

output
:

A blending surface B between C1 and C2;

1.1 Co
1 (a) ⇐ Offset of C1(a) by od in the domain of S1;

1.2 Co
2 (b) ⇐ Offset of C2(b) by −od in the domain of S2;

1.3 R1(a, p) ⇐ ruled surface from C1(a) to Co
1 (a);

1.4 R2(a, p) ⇐ ruled surface from Co
2 (b(a)) to C2(b(a));

1.5 Re
1(a, p) ⇐ S1(R1(a, p));

1.6 Re
2(a, p) ⇐ S2(R2(a, p));

1.7 B(a, p) ⇐ Blend(Re
1(a, p), R

e
2(a, p));

Lines 1.1 and 1.2 of Algorithm 1 compute the offsets by a small
radius od to the input rail curves that are assumed to be contained
in the domains of Si. The influence of od on the outcomewill be dis-
cussed later. In Lines 1.3 and 1.4, two ruled surfaces are constructed
in the parametric spaces of both S1 and S2. One should note that in
Line 1.4, we can also control the mapping between the two curves’
parameterizations using b(a). As a first order approximation, b(a)
can be a linear re-parameterization that maps the domain of C1 to
that of C2 and the curve–curve composition C2(b(a)) is of the same
degree as C2. However, an additional degree of freedom is now be-
ing added, by b(a), to possibly control the speed of C2 and possibly
match it to (a scaled constant factor of) the speed of C1. Alterna-
tively, b(a) can be used to induce a desired speed on both C1 and
C2 as is done in [19] that approximates an arc-length parameteriza-
tion, or to match some shape similarities between the two curves,
as is done, for example in [20]. Then, the two ruled surfaces are
mapped to the Euclidean space in Lines 1.5 and 1.6 of Algorithm 1
by using the SSC operator.

The final step, in Line 1.7, computes the desired blending
surface. Denote by Bk a blending surface with a Gk-continuity. For
a C0 blending surface, one can use linear (Bézier basis) functions:

B0(a, p) = (1 − p)Re
1(a, p) + pRe

2(a, p). (2)

For a G1 blending surface, one can use the cubic Hermite basis
functions:

B1(a, p) = H00(p)Re
1(a, 0) + H10


∂Re

1(a, p)
∂p


p=0



+H01(p)Re
2(a, 1) + H11


∂Re

2(a, p)
∂p


p=1


. (3)

2 Otherwise, one can always Ck-extend the domain of Si a bit, computing a larger
SLi surface that identifies with Si in the original domain.
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