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a b s t r a c t

The beta-complex is the most compact and efficient representation of molecular structure as it stores
the precise proximity among spherical atoms in molecules. Thus, the beta-complex is a powerful tool
for solving otherwise difficult shape-related problems in molecular biology. However, to use the beta-
complex properly, it is necessary to correctly understand the anomalies of both the quasi-triangulation
and the beta-complex. In this paper, we present the details of the anomaly of the beta-complex in relation
to the quasi-triangulation. With a proper understanding of anomaly theory, seemingly complicated
application problems related to the geometry and topology among spherical balls can be correctly
and efficiently solved in rather straightforward computational procedures. We present the theory with
examples in both R2 and R3.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The quasi-triangulation is the dual of the Voronoi diagram of
spherical balls, and thus they have identical information on the
proximity among the balls. The beta-complex is a subset of the
quasi-triangulation and represents the precise proximity among
the balls within and on the boundary of a set of balls where
the boundary is defined with respect to a spherical probe that
accesses the ball set. The beta-complex can be efficiently computed
from the quasi-triangulation. For the details of the Voronoi
diagram of balls, the quasi-triangulation, and the beta-complex,
see [1–4].

The beta-complex has proven its powerful capability in
reasoning the spatial structure among a set of atoms in a molecule
and many important applications in computational and structural
molecular biology have been found. Applied to the problems in
molecular biology, the beta-complex is a powerful computational
tool for correctly and efficiently solving otherwise difficult shape-
and/or geometry-related problems due to its dual properties stated
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as follows:

• Precise Proximity. The beta-complex has precise proximity
information among all atoms both within and on the boundary
of a molecule where the boundary is defined by a probe.

• Concise Abstraction. The beta-complex only has the topology
information of the nearest neighbors for each atom in the form
of the connectivity among its simplexes.

Additionally, the beta-complex has the following property:

• Multi-resolution. The beta-complex can be defined with respect
to the probe of a desired radius.

The Protein Data Bank (PDB) files [5–7], for example, contain a
precisemolecular representation but do not have any proximity in-
formation. Examples of using the ‘‘precise proximity’’ perspective
include the computation of the Connolly surface of amolecule [8,9]
and the computation of molecular mass properties such as the van
derWaals volume and the van derWaals area [10]. Examples of us-
ing the ‘‘concise abstraction’’ perspective include the recognition of
a potential binding site, called a pocket, of a compound on amolec-
ular boundary [11] and a fast docking simulation [12]. All these
problems, including many more to be found, can be efficiently
solved using the single framework of the quasi-triangulation and
beta-complex.

However, to use the quasi-triangulation and the beta-complex
properly, it is necessary to understand them correctly. Despite
its usefulness, the beta-complex may seem at first somewhat
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difficult to understand because it is in general not necessarily
a simplicial complex. From the interactions with users of the
beta-complex, we have learned that the notion of anomaly is the
core part of the difficulty because it is a new concept that the
simplicial complex does not possess. In order to use the beta-
complex properly, it is necessary to correctly understand the
anomalies in the beta-complex. The Delaunay and the regular
triangulations, which are respectively the duals of the ordinary
Voronoi diagram of points and the power diagram, are simplicial
complexes whose mathematical and computational properties
are simple, powerful, and well-known [13–15]. However, the
quasi-triangulation is not necessarily a simplicial complex and its
mathematical and computational properties are currently actively
being studied and reported. The topological properties that cause
the quasi-triangulation to violate the conditions of a simplicial
complex is termed as an ‘‘anomaly’’. It turns out that there are very
few well-defined anomaly cases in both R2 and R3.

Given a set of disks in R2 and a set of spheres in R3 with
different radii, the quasi-triangulation may be either simplicial
or non-simplicial depending on the configuration of the input
spheres. If the quasi-triangulation is simplicial, the beta-complex
is also simplicial and its application to shape-related problems
is obvious. When the quasi-triangulation is non-simplicial, the
beta-complex can be either simplicial or non-simplicial depending
on the probe size that is usually denoted by the parameter β .
If the quasi-triangulation is non-simplicial but the beta-complex
is simplicial, the use of the beta-complex is still straightforward.
However, if both the quasi-triangulation and the beta-complex are
non-simplicial, a conceptual difficulty may arise for properly using
the beta-complex which may seem counter-intuitive.

This paper presents the anomalies of the quasi-triangulation
and the beta-complex in R2 and R3 and shows that the not-yet-
familiar concept of anomaly can be easily explained and used
correctly. With the proper understanding of the anomaly theory,
complicated geometry problems among spherical particles can
be correctly and efficiently solved in a rather straightforward
computational procedure. We present the theory of anomaly
using the problem to compute the volume of the region of the
space taken by the union of three-dimensional spherical atoms
constituting a molecule. This is because researchers in molecular
biology are frequently interested in calculating various types of
molecular properties and it turns out thatmany of these properties
are functions of the volume (and/or the area) of the region of space
taken by a molecule or its offset. To aid reader comprehension, we
first present an anomaly in R2 with the problem to compute the
area of the region in the plane taken by the union of circular disks
in the plane.

Section 2 introduces some preliminary computational building
blocks with their definitions and properties. Section 3 presents
the basic concept of an anomaly in the quasi-triangulation of
circular disks in R2. Section 4 presents the relationship between
the anomaly of the quasi-triangulation and the anomaly of the
beta-complex of three disks in the plane. Section 5 presents a
similar phenomenon for five disks. Section 6 presents an anomaly
for spherical balls in R3. Section 7 concludes the paper.

2. Preliminaries

Let A = {a1, a2, . . . , an} be a set of three-dimensional spherical
atoms where ai = (ci, ri) denotes an atom with the center ci and
radius ri ≥ 0. The Voronoi diagram VD of A is the tessellation
of the space where each location in the space is assigned to the
boundary of the closest atom a ∈ A where the distance is defined
by the ordinary Euclidean distance. Note that VD is different
from the ordinary Voronoi diagram of points. For the details of

VD , see [1,16–18]. Given VD , its dual structure called the quasi-
triangulationQT is defined by dualmapping: from a vertex inVD
to a tetrahedral cell inQT , from an edge inVD to a triangular face
in QT , from a face in VD to an edge in QT , and from a cell in
VD to a vertex in QT where the vertex coincides with the center
of a related atom. The quasi-triangulation QT can be represented
as a quadruplet QT = (VQ , EQ , FQ , CQ ) where VQ , EQ , FQ , and
CQ are the sets of vertices, edges, faces, and cells in the quasi-
triangulation, respectively. In this paper, for notational simplicity,
we denote the vertex set as VQ

= {aQ1 , aQ2 , . . . , aQn } where a vertex
aQi ∈ VQ corresponds to the center of the corresponding atom aQi .
Similarly, eij ∈ EQ denotes that the edge is defined by the vertices
aQi and aQj (to be specific, the centers of aQi and aQj ), fijk ∈ FQ

denotes that the face is defined by the vertices aQi , a
Q
j , and aQk , and

cijkl ∈ CQ denotes that the cell is defined by the vertices aQi , a
Q
j ,

aQk , and aQl , all these simplexes with the orientation given by the
order of the indices. The conversion between VD and QT can be
done in linear time with respect to the number simplexes in QT .
It is assumed in this paper that the topologies of VD and QT are
stored in an appropriate data structure such as the radial-edge data
structure [19] and the inter-world data structure [4], respectively.
It is important to note that two d-dimensional simplexes inQT can
be in contact atmore than one (d−1)-dimensional simplex. Hence,
QT is not necessarily a simplicial complex. For the definition of a
simplicial complex, see [15,20,21]. For the details of QT , see [3,4].

Two cells in QT are called face-connected if they share a face.
If two cells share k faces, they are said to be k-connected. Two
cells in the simplicial complex are 1-connected, if they are face-
connected. However, two cells in QT in R3 are not necessarily
1-connected, but they may be 2-, 3-, or 4-connected. Hence, QT is
not necessarily a simplicial complex. InR3, the face-connected cells
in QT form a cluster of cells called a world and there can be more
than one world in a QT . In other words, in theory, there can be
more than oneworldwhere eachworld is disconnected from other
worlds from the face-connectivity point of view. Hence, there can
be a hierarchy amongworlds in the quasi-triangulation in that one
world may contain another. A world containing another is called a
big-world and one contained in another is called a small-world. In
this sense, ‘‘big’’ and ‘‘small’’ are relative terms. The containment
of worlds may repeat in that a small-world may contain a smaller
world, and a smallerworldmay also contain an even smallerworld,
and so on. The biggest world is called the root-world and there is
only one root-world in QT . The k-connectedness (where k = 2, 3,
and 4 in R3) and the world hierarchy makes QT a non-simplicial
complex and these conditions are called anomalies in the quasi-
triangulation. For details, see [2–4].

Each simplex σ ∈ QT is associated with four bounding states:
exterior, singular, regular, and interior. A simplex σ is called singular
if it does not bound any higher-dimensional simplex and regular if
it bounds some higher-dimensional simplex. All the singular and
regular simplexes constitute a network of simplexes denoted by
the symbol ∂Sβ . A simplex σ is called interior or exterior if it is
interior or exterior to ∂Sβ , respectively. If a real-valued parameter
β (which is the radius of a spherical probe) is given, σ is assigned
by one of the four bounding states where its interpretation is
as follows: if σ is singular, the atom(s) corresponding to the
vertex(es) of σ can be touched by the probe from more than
one direction; if σ is regular, its corresponding atom(s) can be
touched by the probe from only one direction; if σ is interior, its
corresponding atom(s) cannot be touched by the probe from any
direction due to another atom’s hindrance; otherwise, σ is exterior
and its corresponding atom(s) cannot be touched simultaneously
by the probe from any direction because the probe size is not big
enough. A vertex cannot be exterior independent of its dimension.
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