
Computer-Aided Design 52 (2014) 1–16

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Decomposition of geometric constraint graphs based on computing
fundamental circuits. Correctness and complexity
R. Joan-Arinyo ∗, M. Tarrés-Puertas, S. Vila-Marta
Grup d’Informàtica a l’Enginyeria. Universitat Politècnica de Catalunya. Barcelona, Catalonia

h i g h l i g h t s

• A new algorithm to solve the 2D geometric constraint problem is described.
• The graph is decomposed according to a set of fundamental circuits.
• Fundamental circuits are induced by a spanning tree.
• We prove the algorithm soundness.
• The worst running time is quadratic with the number of geometric elements.

a r t i c l e i n f o

Article history:
Received 30 April 2013
Accepted 17 February 2014

Keywords:
Geometric constraint solving
Graph decomposition
Fundamental circuits
Bridges
Planar embeddings

a b s t r a c t

In geometric constraint solving, Decomposition–Recombination solvers (DR-solvers) refer to a general
solving approachwhere the problem is divided into a set of sub-problems, each sub-problem is recursively
divided until reaching basic problemswhich are solved by a dedicated equational solver. Then the solution
to the starting problem is computed by merging the solutions to the sub-problems.

Triangle- or tree-decomposition is one of the most widely used approaches in the decomposition step
in DR-solvers. It may be seen as decomposing a graph into three subgraphs such that subgraphs pairwise
share one graph vertex. Shared vertices are called hinges. Then amerging step places the geometry in each
sub-problem with respect to the other two.

In this work we report on a new algorithm to decompose biconnected geometric constraint graphs by
searching for hinges in fundamental circuits of a specific planar embedding of the constraint graph. We
prove that the algorithm is correct.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Geometric constraint solving was developed as a core technol-
ogy in parametric and feature-based Computer-Aided Design sys-
tems. Lately it has found a number of applications in fields like
linkage design, chemicalmolecularmodeling, computer vision and
dynamic geometry.

Many attempts to provide general, powerful and efficient tech-
niques to solve the geometric constraint problem have been re-
ported in the literature. For an extensive review refer to [1] and
the references therein.

Among the different approaches to geometric constraint solv-
ing, we are interested here in a divide and conquer approach

∗ Corresponding author.
E-mail addresses: robert@lsi.upc.edu (R. Joan-Arinyo), mtarres@dipse.upc.edu

(M. Tarrés-Puertas), sebas@dipse.upc.edu (S. Vila-Marta).

consisting of three steps, [2]

1. Divide the problem P into several sub-problems, say P1, P2, . . . ,
Pn.

2. Solve each sub-problem Pi recursively with known algorithms.
3. Build the solution to problem P bymerging the solutions to sub-

problems, P1, P2, . . . , Pn.

Constraint solvers that fit in this description are known as
Decomposition–Recombination solvers (DR solvers). This approach
has been particularly successful when the decomposition into sub-
problems and subsequent recombination of solutions to these sub-
problems can be described by a plan generated a priori, that is, a
plan generated as a preprocessing step without actually solving
the subsystems. The plan output by the DR-planner remains
unchanged as numerical values of parameters change. Such a plan
is known as the DR-plan and the unit in the solver that generates
it is the DR-planner, [3]. In this setting, the DR-plan is then used
to drive the actual solving process, that is, computing specific

http://dx.doi.org/10.1016/j.cad.2014.02.006
0010-4485/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cad.2014.02.006
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2014.02.006&domain=pdf
mailto:robert@lsi.upc.edu
mailto:mtarres@dipse.upc.edu
mailto:sebas@dipse.upc.edu
http://dx.doi.org/10.1016/j.cad.2014.02.006


2 R. Joan-Arinyo et al. / Computer-Aided Design 52 (2014) 1–16

coordinates that properly place geometric objects with respect to
each other.

Our interest focuses on DR-solvers where the geometric con-
straint problem is abstracted as a graph and thus, solving the prob-
lem generically corresponds to solving the corresponding graph.
Therefore the DR-planner is based on graph analysis whose oper-
ation will be purely combinatorial. We consider well-constrained
problems, loosely speaking, problems where resulting geometric
objects are well-defined.

In a pioneering work, Hoffmann et al., [3], classify graph-based
DR-planners into two main categories. Planners in one category,
called Constraint Shape Recognition, work by recognizing specific
solvable subgraphs of known shape, most commonly, triangular
patterns. DR-planners have been widely used and related litera-
ture is profuse. Examples are [4–16]. DR-planners in the second
category are called Generalized MaximumMatching planners. Plan-
ners in this category work in two steps. First they isolate certain
solvable subgraphs by transforming the constraint graph into a bi-
partite graph where a maximum generalized matching is found.
Then the DR-plan is figured out by connectivity analysis. To this
category belong DR-planners reported in [17–20].

In [21], Hoffmann et al. reported on two new DR-planners
that exhibit features of both categories. The Condensed Algorithm
applies repeatedly a flow-based algorithm to find minimal dense
solvable subgraphs, [22], that are subsequently extendedby adding
more geometric objects one at a time. The Frontier Algorithm
and the Modified Frontier Algorithm are essentially improvements
of the Condensed Algorithm. These algorithms have been further
developed for problems considering purely distance constraint
systems by Lomonosov, [23] and by Zhou, [24]. Surveys can be
found in [25] and [26]. A discussion on geometric constraint solving
progress and research directions can be found in [27].

We consider geometric constraint problems in the Euclidean
plane consisting of a finite set of geometric objects and a finite
set of constraints defined between them. The geometric objects are
drawn from a fixed set of types such as points, straight lines, circles
and arcs of circle. The constraints include topological constraints
such as tangency, incidence and perpendicularity, and metric con-
straints such as point–point distance, perpendicular point–straight
line distance and line–line angle. Geometric constraint problems
are always well-constrained or minimally rigid, [28].

In this paper we develop the DR-planner introduced in [29] in
three ways: (1) we give detailed algorithms, (2) we show that the
approach is sound and, (3) we prove that the runtime is O(n2)
where n is the number of geometric elements in the problem.
Experimental results show that for problems with 3 ≤ n ≤ 200,
the runtime is O(n).

The DR-planner belongs to the constraint shape recognition
category and is inspired in the algorithm for finding triconnected
components of a graph reported by Miller and Ramachandran
in [30]. The strategy used to divide a graph into subgraphs is
the tree- or triangle-decomposition approach reported in [31].
Decompositionmay be understood as decomposing a problem into
three sub-problems such that pairwise share a common geometric
primitive, that we call hinge. Recombination is to place three
primitives with respect to each other. In this approach, constraint
problems consisting of three primitives are used as building blocks
for larger constraint problems.

The DR-planner searches for a set of three hinges in fundamen-
tal circuits associated to a given spanning tree of the constraint
graph. The algorithmhas twomain steps, (i) transforming the given
graph into a simpler, planar graph and (ii) computing a planar em-
bedding for the transformed graphwhere hinges are identified as a
set of three vertices shared by two faces. We have proved that the
algorithm is correct in the following sense. First the graph trans-
formation preserves the hinges. Second hinges, if present, always

belong to the common boundary of two faces in a planar embed-
ding of the transformed constraint graph.

The rest of this paper is organized as follows. In Section 2 we
recall some basic concepts from graph theory and planar embed-
dings that we shall use later on. For the sake of completeness, we
include in Section 3 a short description of tree-decomposability, a
basic concept in our DR-planner. In Section 4 we describe our DR-
planner and in Section 5 we provide an additional case study to
illustrate how the approach works. In Section 6 we prove that the
algorithm is correct. The algorithmworst running time is analyzed
in Section 7. Section 8 gives experimental algorithm runtime val-
ues. Finally, in Section 9 we offer a short discussion and a couple of
issues that deserve further work.

2. Preliminaries

In this section we recall basic terminology of graph theory, the
concept of geometric constraint graph associated to a geometric
problem defined by constraints, and some definitions related to
geometric constraint graphs. For more information on general
graphs theorywe refer the reader to Even [32] and to Thulasiraman
and Swamy [33]. Concerning geometric constraint graphs the
reader can check the works by Hoffman et al. [34] and Joan-Arinyo
et al. [31].

2.1. Basic graph concepts

In this work, a graph G = (V , E) is a finite set V of nodes or
vertices and a collection of edges, E. An edge is an unordered pair
(u, v) of distinct vertices u, v ∈ V (G). In general V (G) and E(G)will
denote respectively the set of vertices and edges of the graph G.

The degree of a vertex v ∈ V (G) is the number of edges in E(G)
incident to v.

Apath is a sequence of verticesv1, v2, . . . , vn such that (vi, vi+1)
is an edge for 1 ≤ i ≤ n. A path is simple if all vertices on the path
are distinct.

In this work, a circuit is a simple path that does not contain
any repeated vertices except v1 and vn which are the same. In
what follows, we shall denote the set of vertices in a circuit as
C = ⟨v1, v2, . . . , vn−1⟩ and we shall consider that vertices are cir-
cularly sorted. For example, ⟨b, d, e, c⟩ and ⟨d, e, c, b⟩ are equiv-
alent descriptions for the circuit in Fig. 1. Whether vertices are
sorted clockwise or counterclockwise is irrelevant.

A graph G = (V , E) is connected if there exists a path between
every pair of vertices inG, otherwiseG is disconnected. Themaximal
connected subgraphs of a disconnected graph G are the connected
components of G.

Let G = (V , E) be a connected graph. A vertex v ∈ V (G) is an
articulation vertex if V (G) − {v} is disconnected. If v ∈ V (G) is an
articulation vertex, there are vertices u, w ∈ V (G), with u ≠ v and
w ≠ v such that v is on every path connecting vertices u and w.

A non-separable or biconnected graph G = (V , E) has no artic-
ulation vertices, otherwise it is separable. A biconnected component
of a connected graph G is a maximal biconnected subgraph of G.
A connected graph can be decomposed into biconnected compo-
nents. For any biconnected graph G = (V , E), given a pair of ver-
tices u, v ∈ V (G) with u ≠ v, there are, at least, two disjoint paths
connecting u and v.

The connectivity of a graph G is the minimum number k of
vertices that must be removed to disconnect G. If the connectivity
of G is k, we write κ(G) = k. For a disconnected graph G, κ(G) = 0.
For a connected graph G, κ(G) ≥ 1. A separable graph G has
κ(G) = 1. A biconnected graph G has κ(G) ≥ 2. In a similar way a
graph G with κ(G) ≥ 3 is called triconnected. Biconnected graphs
can be decomposed into triconnected components.



Download English Version:

https://daneshyari.com/en/article/439495

Download Persian Version:

https://daneshyari.com/article/439495

Daneshyari.com

https://daneshyari.com/en/article/439495
https://daneshyari.com/article/439495
https://daneshyari.com

