
Computer-Aided Design 49 (2014) 1–7

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

A multi-threaded algorithm for computing the largest non-colliding
moving geometry
Evan Shellshear ∗, Sebastian Tafuri, Johan Carlson
Geometry and Motion Planning Fraunhofer-Chalmers Research Centre, Gothenburg, Västra Götaland, 41288, Sweden

h i g h l i g h t s

• Introduce a novel algorithm to compute largest volume to pass along a path.
• Introduce also a multi-threaded version of the algorithm.
• Novel use of the existing data structures that scale linearly with the problem size.
• Abstracts away the geometry so it can be used with any combination of geometries.

a r t i c l e i n f o

Article history:
Received 2 September 2013
Accepted 5 December 2013

Keywords:
Collision detection
Multi-threaded
Largest non-colliding volume

a b s t r a c t

In this article we present an algorithm to compute the maximum size of an object, in three dimensions,
that can move collision-free along a fixed trajectory through a virtual environment. This can be seen as a
restricted version of the general problem of computing the maximum size of an object to move collision-
free from a start position to a goal position. We compute the maximum size by dividing the object into
numerous small boxes and computing which ones collide with the virtual environment during themove-
ment along the given trajectory. The algorithm presented is optimized for multi-threaded computer ar-
chitectures and also uses data structures that leave a small memory footprint making it suitable for use
with large virtual environments (defined by, e.g., millions or billions of points or triangles).

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Being able to determine whether a virtual object can pass
through a virtual environment without collision is a fundamen-
tal problem in virtual design. Depending on the exact problem at
hand, there exist hundreds of papers addressing this problem from
all sorts of aspects. In this paper we focus on a lesser studied prob-
lem of utmost importance for industrial designers. We are inter-
ested in being able to compute the largest object that can travel
collision-free from a start configuration to a goal configuration. By
the largest object we mean the object that has the largest volume
according to some user defined way of measuring volume (as ex-
plained below). In this paper, we confine the object to travel along
a fixed trajectory through a fixed virtual environment.

This academic investigation is motivated by numerous real life
problems (see below) and the basicmotivation for this article is the
virtual verification of car designs. In particular, one wants to know
if a new car design can pass through an assembly line without col-
lidingwith other objects and if it does collide,what are theminimal
design changes that need to be made to avoid the collisions. This

∗ Corresponding author.
E-mail address: evan.shellshear@fcc.chalmers.se (E. Shellshear).

information can also be used for future design problems if the en-
vironment and trajectory remain the same (as is typical for factory
installations).

Another motivation for this study was to improve the sustain-
ability of current technologies. In particular, the results of this pa-
per are intended to allow companies to reuse the existing facilities
by giving designers a guarantee that their new designs fit in the
current industrial installation and also letting them know themin-
imum changes to both the object they are designing and/or the
industrial environment if necessary. This virtual verification saves
the designer significant timemuch earlier in the design phase. Cur-
rently to determine whether a new model design fits along an as-
sembly line or not, one is required to build a physical mock-up of a
car (orwhatever is being produced) and run it through an assembly
line to check for collisions. Such a process is obviouslymuch slower
and costlier than having a simple virtual tool to directly test a new
design and suggest which minimal changes need to be made.

Significant design changes are often very costly, hence the goal
of many designers is to know what the minimal structural design
changes are to make sure objects do not collide with each other.
Typical applications where computing the largest non-colliding
designs plays an important role include, inter alia, the ability to
route andpathplan objects through tight spaces such as engines [1]
and other assembly components, designing robots for tight spaces

0010-4485/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cad.2013.12.001

http://dx.doi.org/10.1016/j.cad.2013.12.001
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2013.12.001&domain=pdf
mailto:evan.shellshear@fcc.chalmers.se
http://dx.doi.org/10.1016/j.cad.2013.12.001


2 E. Shellshear et al. / Computer-Aided Design 49 (2014) 1–7

in path planning applications [2,3], etc. Once the set of colliding
parts has been discovered one can then apply any of the numerous
algorithms to effect the necessary design changes to avoid colli-
sions (e.g. [4,5]).

The problem we are interested in can be defined more exactly
as follows. Let A be some geometrical object (set of NURBs, polygon
soup, points, etc.) that bounds some volume of space and B another
geometrical object (representing the surrounding environment).
We wish to compute the remaining non-colliding space bounded
byA afterAhas traveled along a given trajectory (motion, path, etc.)
defined by a set of rigid transformations. We would like to remove
all parts of the space bound by A that collidewith any part of B dur-
ing the set of rigid transformations. From the design perspective,
the remaining non-colliding volume can be used to alter the orig-
inal geometry so that it can pass along the original path collision-
free. In addition, we are also interested in determining how much
larger A can be and still have parts of the enlarged volume not col-
liding with any part of B.

To compute the largest remaining non-colliding volume to
travel along a given path, we developed an algorithm as follows.
Our algorithm first allows the user to specify the largest volume
object they are interested in, say A. We then compute a bounding
box around A and divide the box into smaller subboxes with fixed
side lengths defined by the user (so-called tolerance). This size rep-
resents the level of error acceptable to the user. An hash-based oc-
tree containing the surrounding environment is then created and
used to compute collisions between the environment and the ob-
ject during its motion. As collisions are detected between the sub-
boxes and the octree, subboxes are removed. The final remaining
set of subboxes left at the end of the motion represents the largest
shape that can pass through the environment along the path with
the given user tolerance. The algorithms used here are located at
the confluence of algorithms for finding the maximum empty sub-
set of a given domain [6], collision detection [7] and being able to
compute boolean operations for arbitrary geometries [8].

The remainder of this paper is organized as follows. In the
next section, we present our algorithm and its analysis as well
as the existing literature relevant to each part of the algorithm.
We then present our experimental results, which are followed by
a discussion of the results from the previous section. In the final
section we conclude.

2. Methods

In this section, we describe an algorithm that solves the prob-
lem stated in the introduction. When designing the algorithm we
wish to bear a few goals in mind. First of all, if the algorithm is to
be run in the main memory, then it needs to have minimal space
requirements because it will be used for point clouds withmillions
(or billions) of points. In spite of this, we do not want an unneces-
sarily slow algorithm for computing the final non-colliding geom-
etry because the algorithmwill be used for design purposes. When
designing either the trajectory or the geometry one often requires
the ability to make small changes and then rerun the simulation
to see the effect of the changes. Hence, the given algorithm should
also be fast.

To achieve these goals we chose to solve the problem in the
following way. To represent the moving object we computed its
bounding box and subdivided it into a number of smaller subboxes.
The size of the subboxes were defined by a tolerance chosen by
the user. Simultaneously we chose to represent the cloud via a
hash-based octree, [9], whereby the user also specifies a minimum
tolerance level which defines the octree’s leaf cells’ side lengths.
Allowing the user such a choice is natural because for scanned
point clouds one has a level of error in the scan results as well as a
certain minimum distance between each scanned point. However,
the biggest advantage of representing the geometries as such, is
that it could be used to represent other types of geometries than

Fig. 1. The subdivision of the bounding box into subboxes.

merely points. One could also build a similar octree based on tri-
angles or other geometric primitives and simply mark cells as oc-
cupied if they contain a point or part of a triangle.We describe now
these choices inmore detail aswell as a justification for the choices.

As stated in the introduction, it is useful for the designer to be
able to not just know if the original object can pass along the tra-
jectory collision free but also the extra space around it. This extra
volume can be used to compute themaximumamount of clearance
a certain part of the object has with its surroundings when travel-
ing along the trajectory. This can be easily facilitated by our choice
of using the bounding box of the object to represent the object. To
find the maximum clearance around the object, one can increase
the size of the bounding box in each dimension which can then be
used to find the largest set of boxes that can move along the tra-
jectory collision free.

So, we first find the bounding box of the object that is to pass
along the trajectory. We then divide the box up into smaller sub-
boxes with equal side lengths, equal to a user-defined tolerance,
see Fig. 1.We thenmove the collection of boxes along the trajectory
and check whether the boxes collide with the surrounding envi-
ronment or not with help of the environment’s octree represen-
tation. The interpretation of this representation is that the point
cloud represents a solid object and if a point (represented by an oc-
tree leaf cell) intersects one of the subboxes then some solid part of
the environment would intersect the subbox too. This interpreta-
tion also puts a minimum bound on the octree leaf cell size, which
should not be smaller than the average spacing between points so
that we do not miss intersections caused by solid parts of the en-
vironment.

Apart from using an octree to facilitate collision detection, one
could carry out the collision detection using other methods. One
possibility is to compute a swept volumeof the object for thewhole
path and then check for collision, [10]. However, such methods
have been shown to be very time consuming, often taking minutes
for short paths and small meshes [11]. We intend to use our algo-
rithm to compute the motion of an arbitrarily complex object over
hundreds of meters, which would mean any swept volume com-
putationwould be completely impractical. Hence, the use of swept
volumes in our case is inappropriate. Other possibilities are to cal-
culate theminimumdistance of each subbox to all points along the
entire path. This can be efficiently done by conservative advance-
ment [12,13] and is similar to the way we have chosen to solve the
problem, however, for non-convex geometries the algorithms we
use are much simpler and also avoid the extra memory overhead
that [13] imposes (which is too large for point clouds withmillions
or billions of points). In addition, to use the conservative advance-
ment for non-convex geometries, as developed in [13], requires
one to build a bounding volume hierarchy around the point cloud
(as done in, e.g., [14]) which can be impractical for an algorithm to
be run in themainmemory for point clouds with billions of points.

In addition to providing fast collision queries via our octree, we
also naturally wish to provide a guarantee that all possible colli-
sions will be found. To do so, we use results from [15] to repeat-
edly move each subbox as far as possible along the trajectory in a



Download English Version:

https://daneshyari.com/en/article/439516

Download Persian Version:

https://daneshyari.com/article/439516

Daneshyari.com

https://daneshyari.com/en/article/439516
https://daneshyari.com/article/439516
https://daneshyari.com

