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a b s t r a c t

There are several prevailing methods for selecting knots for curve interpolation. A desirable criterion for
knot selection is whether the knots can assist an interpolation scheme to achieve the reproduction of
polynomial curves of certain degree if the data points to be interpolated are taken from such a curve.
For example, if the data points are sampled from an underlying quadratic polynomial curve, one would
wish to have the knots selected such that the resulting interpolation curve reproduces the underlying
quadratic curve; in this case, the knot selection scheme is said to have quadratic precision. In this paper,
we propose a local method for determining knots with quadratic precision. This method improves on our
previous method that entails the solution of a global equation to produce a knot sequence with quadratic
precision. We show that this new knot selection scheme results in better interpolation error than other
existing methods, including the chord-length method, the centripetal method and Foley’s method, which
do not possess quadratic precision.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of computing parametric interpolation curves is
of fundamental importance in computer aided geometric design,
scientific computing and computer graphics. Given a sequence of
data points Pi, i = 1, 2, . . . , n, an interpolation scheme needs the
so called knots ti associated with the Pi to produce an interpolation
curve P(t) with P(ti) = Pi. The quality of the interpolation curve,
in terms of fairness and interpolation error, depends on not only
the particular interpolation scheme used, but also the selection of
the knots ti. This paper addresses the problem of computing knots
for a given set of data points.

There are several existing methods for solving this problem.
It is well known that using a uniform parameterization (that is,
the knots ti are equally spaced) to choose knots generally leads
to unsatisfactory results when the distances between consecutive
data points vary greatly. The chord length parameterization is
a widely accepted method for determining knots [1–6]. This
method produces satisfactory results because the accumulated
chord length is a reasonable approximation to the accumulated
arc length. The quality of chordal parameterization is discussed
recently in paper [7]. Two other commonly used methods are
Foley’s method [8] and the centripetal method [9], which are
the variations of the chord length method. Our experiments in
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Section 5 show that, in terms of interpolation error, none of these
methods has a distinct advantage over the others. Moreover, in
some cases, none of these methods can produce a satisfactory
result.

The problem of determining knots for constructing B-spline/
NURBS curve is discussed [10,11], where the knots are determined
using an energy-optimization method. Other recent methods of
determining knots can be found in [12–14].

One property shared by many of the above methods for knot
selection is linear precision, which means that, roughly speaking,
using the knots provided by such a method, the resulting inter-
polation curve will be a linearly parameterized straight line if the
data points are sampled from a straight line. By approximation
theory, in general, a smooth function with bounded derivatives
can be better approximated with a polynomial of higher degree.
This means that a higher order precision would in general lead
to an interpolation curve with a smaller interpolation error. Our
contribution is a new, local knot selection method with quadratic
precision.

Since the notion of quadratic precision is central to ourmethod,
it deserves some elaboration. Suppose that we have a curve
interpolation scheme that takes in a set of data points Pi = (xi, yi)
and knots ti to produce polynomial functions x(t) and y(t) that
form a parametric curve P(t) = (x(t), y(t)) to interpolate the
points Pi = (xi, yi); that is, x(ti) = xi and y(ti) = yi, i = 1, 2, . . . ,
n. Now consider two arbitrary quadratic functions g(t) and h(t).
Suppose that the coordinates {xi} and {yi} of the data points Pi are
sampled from g(t) and h(t) with the same variable values ti in the
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increasing order; that is, g(ti) = xi and h(ti) = yi, i = 1, 2, . . . , n.
Then the interpolation scheme is said to have quadratic functional
precision if, with the same ti as knots, it produces an interpolation
curve P(t) = (x(t), y(t)) of the points Pi such that x(t) = g(t) and
y(t) = h(t). That is to say, the original curve G(t) = (g(t), h(t))
on which the data points lie is reproduced by the interpolation
scheme.

However, in a curve interpolation problem, only the data
points are specified and the knots ti are not provided as part
of the input; they need to be estimated by some knot selection
method before applying a curve interpolation scheme. Hence, even
when an interpolation scheme possessing the quadratic functional
precision is used and the data points are sampled from a quadratic
polynomial curve G(t), without an appropriate set of knots ti,
the resulting interpolation curve P(t) may still not reproduce the
curve G(t).

Now we give the definition of quadratic precision of a knot
selection scheme.

Definition. Suppose that an interpolation scheme possessing
quadratic functional precision is used to compute an interpolation
curve for a set of given data points {Pi}, i = 1, 2, . . . , n. A method
for computing knots ti from {Pi} is said to have quadratic precision
if, for any set of data points {Pi} sampled from any quadratic
curve G(t), it produces the knots ti such that with these knots the
interpolation scheme reproduces G(t) as the interpolation curve.

The first author of the present paper and his co-workers
propose a method, to be referred to as the ZCM method [15,
16], that solves a global equation to find knots with quadratic
precision. Here we preset a new, local method that computes
knots with quadratic precision without having to solve a global
equation. In contrast, the knots computed by the chord length,
Foley’s method and the centripetal methods have linear precision
but not quadratic precision.

The remainder of the paper is organized as follows. The idea of
the new method is described in Section 2. In Section 3, we discuss
how to compute the local knot sequences for each data point from
its neighboring points. In Section 4,we use a normalization scheme
to merge the local knot sequences into a global, consistent knot
sequence with quadratic precision. The comparison of the new
method with the chord length method, Foley’s method and the
centripetal methods is presented in Section 5, andwe conclude the
paper in Section 6.

2. Basic idea

The main idea of the method is as follows. We locally estimate
the intervals between consecutive knots based on quadratic curves
interpolating each set of four consecutive data points, assuming
that such four points form a locally convex configuration (i.e. no
inflection). Then these local knot intervals are registered together
via a normalization scheme to determine a global knot sequence.
When the data points are sampled from a quadratic curve,
the quadratic curves interpolating each set of four consecutive
data points become the same curve, since a quadratic curve
(i.e. a parabola) is uniquely determined by four points on it. We
shall show that the global knot sequence thus chosen possesses
quadratic precision.

Let Pi = (xi, yi), 1 ≤ i ≤ n, be a set of distinct data points. Four
consecutive data point Pi+k, k = 0, 1, 2, 3, form a convex chain if
PiPi+1Pi+2Pi+3Pi is a convex polygon. For the moment, we assume
that every point Pi, 1 ≤ i ≤ n, belongs to at least two convex
chains. For example, in Fig. 3, the point Pi belongs to the convex
chains {Pi−2, Pi−1, Pi, Pi+1} and {Pi, Pi+1, Pi+2, Pi+3}.

Let ti denote the knots to be assigned for the points Pi, 1 ≤ i
≤ n. Our goal is to determine the ti in such a way that, if the Pi are

Fig. 1. Five data points.

taken from a parametric quadratic polynomial P(ξ) = (x(ξ), y(ξ))
defined by

x(ξ) = X2ξ
2
+ X1ξ + X0,

y(ξ) = Y2ξ
2
+ Y1ξ + Y0

(1)

i.e., Pi = P(ξi), then

ti = αξi + β, 1 ≤ i ≤ n (2)

for some constants α and β . This will ensure the quadratic
precision, since a linear transform of the knots does not affect the
type of interpolation curves produced by an interpolation scheme
that has quadratic functional precision.

Suppose that the data points Pi, 1 ≤ i ≤ n, are taken from a
parametric quadratic polynomial defined by Eq. (1). Then any four
consecutive data points {Pi−2, Pi−1, Pi, Pi+1}, i = 3, 4, . . . , n − 1
(see Fig. 1) will uniquely determine a quadratic polynomial curve
Pi(t)which is the same as P(ξ) in Eq. (1), but possibly with a differ-
ent parameterization. Since any two proper parameterizations of
a quadratic curve differ by a linear reparameterization, it follows
that t = αξ + β , for some constants α and β .

Let t(0)j = αiξj + βi denote the knots computed with respect
to Pi(t) for the four consecutive data points {Pi−2, Pi−1, Pi, Pi+1}.
Let t(1)j = αi+1ξj + βi+1 denote the knots computed with respect
to Pi+1(t) for the four consecutive data points {Pi−1, Pi, Pi+1, Pi+2}.
Thus, wewill have two sets of knot values t(0)j and t(1)j for the three
data points Pj, j = i − 1, i, i + 1, derived from the two possibly
different parameterizations Pi(t) and Pi+1(t) of the same quadratic
curve P(ξ).

Since the two sequences of knots t(0)j and t(1)j , j = i − 1, i,
i + 1, are both linearly related to ξi, it is possible to use a linear
mapping to match up the two sequences. This is, in fact, the key
idea that enables us to compute knots with quadratic precision
using only local computation. At the overall level of the algorithm,
suppose thatwewant to compute a global sequence of knots for the
data points Pi, i = 3, 4, . . . , n − 1, that are taken from the same
quadratic curve. We first consider all groups of four consecutive
data points and compute locally the knots of the four points in
each group with respect to the quadratic curve locally determined
by these four points; thus each group of points will have its knot
sequence of length 4. Since any two adjacent groups share three
common data points and the two quadratic curves determined
respectively by the two groups of points are the same curve, we
can merge their knot sequences using a linear reparameterization
to form a longer knot sequence.

To develop a complete solution based on this idea, we face two
tasks: (1) computing the local knot sequence tj from each group
of four consecutive data points; (2) merging all these local knot
sequences into a global knot sequence that has quadratic precision.
These two steps will be explained in the following sections.
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