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The whale shark (Rhincodon typus, Smith, 1828) is a migratory species (classed as Vulnerable by the IUCN) with
genetic and circumstantial evidence for inter-ocean connectivity. Given this migratory behaviour, population-
wide occurrence trends can only be contextualized by examining the synchrony in occurrence patterns among
locations where they occur. We present a two-step modelling approach of whale shark spatial and temporal
probability of occurrence in the Atlantic and Pacific Oceans using generalized linear mixed-effects models. To
test the hypothesis that the probability of whale shark occurrence is asynchronous across oceans, as expected
if inter-ocean migration occurs, we used long-term datasets of whale shark sightings derived from tuna purse-
seine logbooks covering most of the central-east Atlantic (1980–2010) and western Pacific (2000–2010). We
predicted seasonal habitat suitability to produce maps in each area, and then evaluated the relative effect of
time (year) on the probability of occurrence to test whether it changed over the study period. We also applied
fast Fourier transforms to determine if any periodicity was apparent in whale shark occurrences in each ocean.
After partialling out the effects of seasonal patterns in spatial distribution and sampling effort, we found no
evidence for a temporal trend inwhale shark occurrence in the Atlantic, but there was aweak trend of increasing
probability of occurrence in the Pacific. The highest-ranked model for the latter included a spatial predictor
of occurrence along with fishing effort, a linear term for time, and a random temporal effect (year), explaining
15% of deviance in whale shark probability of occurrence. Fast Fourier transforms revealed a prominent 15.5-year
cycle in the Atlantic. The increase in the probability of occurrence in the Pacific is concurrent with a decrease
previously detected in the Indian Ocean. Cyclic patterns driven by migratory behaviour would better explain
temporal trends in whale shark occurrence at the oceanic scale. However, despite cycles partially explaining
observations of fewer sharks in some years, overall reported sighting rate has been decreasing. As a result, we
suggest that the current IUCN status of the species should be re-assessed, but more data are needed to examine
the flow of individuals across oceans and to identify possible reasons for asynchronous occurrences.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Most of the readily measureable negative impacts of humans in
marine ecosystems result from direct exploitation (Pauly et al., 1998;
Worm et al., 2006) or related by-catch (Agardy, 2000; Hall et al.,
2000). Climate change is also beginning to affect marine ecosystems
(e.g., Sumaila et al., 2011) via temperature-driven range shifts and
alteration of ocean chemistry (Dulvy et al., 2008; Parmesan, 2006;
Perry et al., 2005; Wernberg et al., 2011). Reported declines in marine
species increasingly challenge the idea that extinctions in the oceans
are unlikely (Hendriks et al., 2006). Based mostly on a reduction in
observed landings from targeted fisheries (Fowler et al., 2005), whale

sharks are currently listed as Vulnerable (i.e., facing a high risk of
extinction in the wild) by the IUCN (www.iucnredlist.org).

Whale sharks (Rhincodon typus, Smith 1828) travel thousands of
kilometres pelagically between near-shore aggregation sites (e.g., Rowat
and Gore, 2007), and their sub-populations are assumed to be connected
across the world's oceans (Castro et al., 2007; Sequeira et al., in press).
This circumglobal migration raises concerns about the adequacy of
current management measures (Rowat, 2007). These generally focus
on confined areas of aggregation where tourism is locally important
(Pierce et al., 2010; Quiros, 2007), and might therefore largely neglect
negative impacts occurring elsewhere (Bradshaw, 2007). Whale
shark-based eco-tourism has been developed based on the anticipation
that individuals from local sub-populations return to the same location
each year at approximately the same time (Taylor, 1996); however,
evidence for declining relative abundance has been reported at some
of these locations (Bradshaw et al., 2008; Theberge and Dearden,
2006). There is also quantitative support for a slight reduction in the
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probability of occurrence in the Indian Ocean during the last decade
(Sequeira et al., 2013a).

Whale sharks are potentially affected by a range of human activities,
including exploitation through direct commercial fisheries (the last
fishing ban occurred in Taiwan only after 2007) (COA, 2007; but see Li
et al., 2012), poaching (Riley et al., 2009), by-catch (Romanov, 2002),
and habitat disturbance via tourism (Heyman et al., 2010) and shipping
(Speed et al., 2008). With temperature being an important predictor of
whale shark distribution (Sequeira et al., 2012) and local relative
abundance (Sleeman et al., 2010a), anthropogenic climate disruption
will possibly affect this species occurrence patterns (Sequeira et al., in
press).

Changes in the abundance of whale sharks might be confounded
by inter-decadal cycles in relative abundance (Sequeira et al., 2013a)
possibly associated with broad-scale migration patterns. Because this
species is highly mobile and populations are connected across oceans at
least at the generational scale (Castro et al., 2007; Schmidt et al., 2009),
temporal trends still can only be inferred by a combination of site-
specific time series of relative abundance (e.g., sightings per unit effort)
with inter-site comparisons of occurrence synchronywithin ocean basins.
Although this comparison is crucial to the understanding of temporal
trends inwhale shark occurrence, no study has so far quantified temporal
sighting probability among known aggregation locationswithin the same
ocean (as suggested by Sequeira et al., 2013a, in press).

Temporal trends in species occurrence are seldom dissociated from
spatial processes. Although statistical models have been mostly used
to assess and predict the spatial distribution of species (Guisan and
Thuiller, 2005; Guisan and Zimmermann, 2000; Hirzel et al., 2002;
Phillips et al., 2009) based on the ecological niche (Hutchison, 1957),
they can also be used to assess temporal trends (Gotelli et al., 2010).
For example, species distribution models have indeed been used to
estimate habitat suitability for highly migratory marine species (Elith
and Leathwick, 2009; Oviedo and Solís, 2008; Praca and Gannier,
2007), aswell as estimate their temporal trends (Sequeira et al., 2013a).

Access to fisheries' logbook data compiled by tuna purse-seiners from
theAtlantic andPacificOceans gave us the opportunity to estimate broad-
scale trends inwhale shark occurrence to complement (and compare) the
assessmentmade previously for the IndianOcean (Sequeira et al., 2013a).
Here we: (1) predict whale shark habitat suitability within the areas
covered by the tuna fisheries in the Atlantic and Pacific, (2) test the
hypothesis of temporal asynchrony in the probability of occurrence, and
(3) assess possible cyclic patterns in occurrence. Our main objective is
to assess the temporal variability in occurrence probability across most
of the species' knowngeographical range by comparing their probabilities
of occurrence in different oceans. We conclude with a discussion of our
results with respect to the species' global threat status.

2. Material and methods

With the main objective to assess temporal trends in whale shark
occurrence in the Atlantic and Pacific Oceans, and compare them with
the results obtained previously for the Indian Ocean (Sequeira et al.,
2012, 2013a), the models we develop here follow a similar approach.
First, we developed habitat suitability models and used the resulting
predictions as part of the input data in our temporal models of
occurrence. Below we describe the biological and environmental data,
the modelling methods including how we accounted for pitfalls in the
opportunistically collected dataset (presence-only data and sampling
bias), and the application of fast Fourier transforms to test for cyclic
patterns in the probability of occurrence.

2.1. Whale shark and environmental data

We used whale shark occurrence data from the Atlantic and Pacific
Oceans recorded in the logbooks of tuna purse-seiners. Because tuna
and whale shark occurrence is often associated with these fisheries

(possibly because they forage on similar prey), nets deployed by tuna
fishers frequently encircle (and subsequently release) whale sharks
as well (Matsunaga et al., 2003). Hereafter, we use the term ‘sightings’
to describe logbook records of these whale shark-associated net sets.
The datasets made available by the Institut de Recherche pour le
Développement (France) and the Secretariat of the Pacific Community
comprise most of the central area of the Atlantic (21°N–15°S and
34°W–14°E) and central western Pacific (15°N–15°S and 130°E–
150°W) (Fig. 1). They include the date of sightings (month and year),
longitude and latitude (0.01-° precision), and information on sampling
effort (number of days spent fishing per month) in each 1-° grid cell
in the Atlantic, and 5-° grid cell in the Pacific (Fig. 1). No information
on individual vessel, vessel nationality or trip units was available. The
data spanned 1980 to 2010 in the Atlantic (total of 18,277 records
provided by the French purse-seiners), and 2000 to 2010 in thewestern
Pacific (total of 2272 records provided by only part of the fleets
registered with the Secretariat of the Pacific Community, but these are
representative of the fisheries in the area). To compare the possible
synchrony of occurrence patterns within the Atlantic and Pacific with
previous results obtained for the Indian Ocean (Sequeira et al., 2013a),
and due to the generally low number of sightings in other seasons
(Fig. S1), we used data for the months of April to June only. A total of
1018 and 167 sightings were reported in the Atlantic and Pacific oceans,
respectively, during the months considered.

We assembled environmental data on daytime sea surface tem-
perature (SST in °C) and chlorophyll a (Chl a in mg m−3) at a 9-km
resolution derived from the Advanced Very High Resolution Radiometer
(AVHRR) PathFinder version 5.0 and Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) satellites, respectively. We used ArcToolBox functions
(ArcGIS 9.3.1™ automated with Python scripts) to calculate mean and
standard deviation of SST and mean Chl a per grid cell for all weekly
composites between April and June for the time period of each ocean
dataset. We also derived depth (m), slope (°) and distance to shore
(km; using the Near tool in ArcGIS 9.3.1™ on a equidistant cylindrical
coordinate system) from the General Bathymetry Chart of the Oceans
(GEBCO, 2003).We then collated the full dataset at a common resolution
of 9 km including six predictors: mean depth, slope, distance to shore,
mean SST, SST standard deviation and mean Chl a. We did not include
standard deviation of Chl a because in the models we previously
developed for the Indian Ocean, this variable was excluded to avoid
including highly correlated variables (Sequeira et al., 2012).

2.2. Models

We developed the modelling approach in two steps to (1) compare
the ability of different combinations of the environmental variables to
predict whale shark habitat suitability, and (2) assess evidence for a
temporal trend in whale shark occurrence in each ocean using the
spatial predictions of habitat suitability from step one. In both steps,
we applied generalized linear mixed-effects models (GLMM) with a
binomial error distribution and a logit link function to our presence-
only data, and generated pseudo-absences for binomial estimation.

The process of generating pseudo-absences differed in eachmodelling
step. In the first (spatial) step, we randomly generated 10 pseudo-
absences per presence based on a spatially random distribution within
the area covered by the fisheries (excluding all presence cells). In the
second (spatio-temporal) step, we generated 100 pseudo-absences per
presence based on both temporally and spatially random distributions,
that is, randomly choosing a date within the temporal coverage of each
dataset and then randomly assigning it to a grid cell within the area
covered by the fisheries (for each ocean). In both steps, we generated
the spatially random distributions with the srswor function (simple
random sampling without replacement) from the {sampling} package
in the R programming language (R Development Core Team, 2012).
For the temporally random pseudo-absence distribution, we randomly
selected a date within the temporal coverage of each dataset (April to
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