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We present a novel method for fast retrieval of exact Minkowski sums of pairs of convex polytopes in
RR?, where one of the polytopes frequently rotates. The algorithm is based on pre-computing a so-called
criticality map, which records the changes in the underlying graph structure of the Minkowski sum of the
two polytopes, while one of them rotates. We give tight combinatorial bounds on the complexity of the
criticality map when the rotating polytope rotates about one, two, or three axes. The criticality map can be
rather large already for rotations about one axis, even for summand polytopes with a moderate number
of vertices each. We therefore focus on the restricted case of rotations about a single, though arbitrary,
axis.

Our work targets applications that require exact collision detection such as motion planning with
narrow corridors and assembly maintenance where high accuracy is required. Our implementation
handles all degeneracies and produces exact results. It efficiently handles the algebra of exact rotations
about an arbitrary axis in R?, and it well balances between preprocessing time and space on the one hand,
and query time on the other.

We use CGAL arrangements and in particular the support for spherical Gaussian maps to efficiently
compute the exact Minkowski sum of two polytopes. We conducted several experiments (i) to verify the
correctness of the algorithm and its implementation, and (ii) to compare its efficiency with an alternative

(static) exact method. The results are reported.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and related work

Let P and Q be two polyhedra in RY. The Minkowski sum of P
and Q is definedasP®Q = {p+q | p € P, q € Q}. Assume thata
bounded polyhedron, referred to as polytope, R is moving in three-
dimensional space. It is well known that R collides with another
static polytope Q, if and only if the origin isin —R&® Q, where —R is
a copy of R reflected about the origin. This observation is the basis
of the intensive use of Minkowski sums in motion planning and
many other related problems; see, e.g., the Introduction in [1].

Minkowski sum is a common and practical operation with
various applications in a wide variety of fields, such as computer
graphics, motion planning in robotics, computer-aided design,
and computer-aided manufacturing. Minkowski sums have been
intensively investigated over the years; a large number of methods
were proposed for efficiently constructing Minkowski sums for
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arbitrary polytopes. One common approach is to decompose each
polytope into convex pieces, compute pairwise Minkowski sums of
pieces of the two polytopes, and finally the union of the pairwise
sums. Computing the Minkowski sum of two convex polytopes
remains a key operation. This work deals with convex polytopes
in R3, which are hereafter simply referred to as polytopes.

Consider a motion planning application, where a robot moves
amidst obstacles. The robot has to find a collision-free path to a
goal position using translations and rotations. This problem has
three degrees of freedom (dofs) in the plane and six dofs in three-
dimensional space in the general case. When the robot is restricted
to rotate about one axis only in three-dimensional space, the
number of dofs reduces to four. We developed a data structure
that can be used to efficiently and robustly retrieve the exact
Minkowski sums that arise during this motion. This data structure
is one step toward efficient and robust collision detection during
such motion.

The collection of incidence relations between the vertices,
edges, and facets of the Minkowski sum polytope, referred to as
its combinatorial structure, remains the same when the summand
polytopes translate. However, the structure can dramatically
change when one, or both, of the polytopes rotate. (This is made
clear by the introduction of Gaussian maps and their properties
below.) Hence, one way to deal with rotations is to recalculate
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the translational configuration space of the robot to cope with
rotation changes. Indeed, a common algorithm for computing the
configuration space for a translating and rotating robot amidst
obstacles is to compute the translational configuration space
for a sample of discrete robot orientations [2, Section 13.5]
[3,4]. This is feasible in the plane, where the translational
configuration space can be represented by a two-dimensional
arrangement. Computing the translational configuration space
in three-dimensional workspace is much more complicated.
Applications tend to avoid computing the entire configuration
space; however, collisions still must be detected. A similar feasible
approach for detecting collision between translating and rotating
robots is to recompute the resulting sum from scratch for few
discrete orientations along the robot rotation-orbit. The results of
these procedures are only approximations, in the sense that they
do not necessarily reveal all the combinatorially distinct Minkowski
sums along the path (see below for a formal definition).

Our method considers in advance all the possible combinatorial
structures of Minkowski sums under rotation about a given arbi-
trary axis, and creates a data structure, from which the appropriate
Minkowski sum structure can be easily extracted for a given rota-
tion angle. Our implementation handles degenerate input and pro-
duces exact results. We only use special, multi-precision number
types. We use algebraic number types when rational numbers are
insufficient, though reducing the performance impact by using an
efficient type of algebraic numbers known as the sqrt-extension;
see Section 2.5.

Computing the exact Minkowski sumin 3D is quite complex and
non-essential for many applications. In some cases, computing an
approximation of the boundary of the Minkowski sum, while pro-
viding a bound on the approximation, is sufficient. One example is
the method suggested by Varadhan and Manocha [5], which results
with an approximation of the 3D Minkowski sum of arbitrary poly-
hedral objects. It is based on the aforementioned decomposition
approach, where the final union is approximated. They provide a
two-sided Minkowski sum bound on the approximation. Ghosh [6]
represents each input polygon or polyhedron with a slope dia-
gram utilizing the concept of negative shapes and computes the
Minkowski addition and decomposition of boundary-represented
objects. Gritzmann and Sturmfels [7] present a polynomial-time
algorithm for computing the Minkowski sum of k polytopes in R¢.

Several output-sensitive methods were especially designed for
exact construction of Minkowski sums of polytopes. Fogel and
Halperin [1] represented every polytope as a Gaussian map and
constructed their Minkowski sum by producing it from their
overlay. Hachenberger [8] suggested to calculate Minkowski sums
using Nef polyhedra, and Fukuda [9] provided a polynomial-time
algorithm for variable number of polytopes and dimensions. This
method was implemented by Weibel [ 10]. Our own work, which is
known to achieve the best results (see comparisons in [1]) serves
as the groundwork for the current results.

Less effort has been invested in efficient construction of
Minkowski sums under rotation. A novel method was proposed
recently by Lien [11]. Lien computes an initial Minkowski sum
from scratch for the initial position of the two polytopes, and
for every rotation of one of the polytopes he computes the new
Minkowski sum structure by applying all the local structural
changes caused by the rotation. This method is efficient, though it
does not use exact geometric computation, and hence presumably
cannot reveal all the combinatorially distinct sums.

Natural applications for our method are collision detection and
answering proximity queries, while the polytopes can translate
and rotate; see [12] for a survey of related problems and
techniques. Among the vast number of publications in this area,
we cite a small sample. The algorithm by Lin and Canny for
collision detection and its optimized versions [ 13-16] maintain the

shortest distance between two polytopes and update it according
to their movement. The algorithm by Gilbert, Johnson, and
Keerthi [17] and its enhancement [ 18] obtain the shortest distance
between the polytopes by using simplices from both polytopes.
The algorithm by Kim and Rossignac approximate collisions under
screw motions [19].

We present a novel method for the fast retrieval of exact
Minkowski sums of pairs of convex polytopes in R? undergoing
rotation. We investigate the space of combinatorially distinct sums
when one of the polytopes undergoes rotation about one, two, or
three axes. In our implementation and experiments we focus on
the case of a rotation around a single arbitrary axis in space.

Ours is the first study that reveals all the combinatorially dis-
tinct Minkowski sums in the case of rotation, successfully coping
with degeneracies and unrestricted by resolution parameters. In
that we make a unique contribution to the expanding toolbox for
handling Minkowski sums, paving the way to using Minkowski
sums of polytopes that can change their orientation in applica-
tions that require high precision such as packing problems (for
example trunk packing), object placement in tight quarters, and
assembly planning. One may wonder whether following the exact
geometric paradigm does not hamper performance in computa-
tionally intensive applications. However, with the fast progress in
exact geometric computing machinery, and since we mostly rely
on generic programming where one can easily upgrade auxiliary
tools with not much programming effort, solutions as ours are be-
coming progressively more efficient.

A secondary contribution of our work is the careful and
complete manipulation (construction and update) of the Gaussian
map of the polytopes and of their Minkowski sum. The Gaussian
map is a fundamental structure in geometric computing, and we
believe that the intricate questions that arise in our work are
inevitable, and will come up wherever Gaussian maps need to be
updated. The intricacies arise since we need to update a subdivision
on a sphere rather than in the plane, which turns out to be
significantly more complex.

The rest of the paper is organized as follows. Section 2 reviews
the spherical Gaussian map framework and the sqrt-extension
number type, which we use in this work. Section 3 defines the
Minkowski sum induced criticality maps in one, two, and three
dimensions. Section 4 describes two enhancements to the original
algorithm one for rotation about an arbitrary axis and another for
economical preprocessing of the criticality map. The outcome of
various experiments is reported in Section 5. Directions for future
work are outlined in Section 6.

2. Preliminaries

In this section we introduce the extended Gaussian map—a
unique dual representation of a polytope. An extended Gaussian
map is in turn represented by an arrangement of geodesic arcs
embedded on a sphere. This data structure is supported by the
2D Arrangements package of CGAL [20]. The package also supports
the overlay operation of such arrangements used to compute the
Minkowski sum of polytopes represented by the arrangements;
see [21-23] and Section 2.2 for more details.

CcAL in general, and the CGAL 2D Arrangements package
in particular, follow the exact geometric-computation (EGC)
paradigm. EGC, as summarized by Yap [24], simply amounts to
ensuring that we never err in predicate evaluations. EGC represents
a significant relaxation from the naive concept of numerical
exactness. Here, computation is carried out using a number
type that supports only inexact arithmetic (e.g., double-precision
floating point arithmetic), while analyzing the computation
correctness. If the computation reaches a stage of uncertainty,
the computation is re-done using unlimited precision. In cases
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