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a b s t r a c t

In this paper, we present a methodology to generate swept volume of prevailing cutting tools undergoing
multi-axis motion and it is proved to be robust and amenable for practical purposes with the help of a
series of tests. The exact and complete SV, which is closed from the tool bottom to the top of the shaft, is
generated by stitching up envelope profiles calculated by Gauss map.

The novel approach finds the swept volume boundary for five-axis milling by extending the basic idea
behind Gauss map. It takes piecewise C1-continuous tool shape into account. At first, the tool shape is
transformed from Euclidean space into Tool map (T-Map) on the unit sphere and the velocity vector of
a cutter is transformed into Contact map (C-Map) using Gauss map. Then, closed intersection curve is
found between T-Map and C-Map on the Gaussian sphere. At last, the inverse Gauss map is exploited to
get envelope profile in Euclidean space from the closed curve in the range. To demonstrate its validity,
a cutting simulation kernel for five-axis machining has been implemented and applied to mold and die
machining.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In modern production facilities, there is an increased demand
for product quality and cost reduction. At the same time, there
is an increase in complexity of part geometries and machining
operations. In order to be able to manufacture with a high
degree of quality, economy and flexibility, simulation systems are
widely used and are securing their place inmodernmanufacturing
processes. One of them is the NC verification system which
simulates numerical control (NC) milling process, which is one
of the most prevailing manufacturing processes. During milling
process, the blank material is removed by geometrically defined
cutters which move along the given tool paths. At the end of the
process a target part is achieved. To ensure product quality and to
avoid junks resulting from overcut or collision between the tool
and the material, it is necessary to simulate the milling process
before real cutting. Because the time-to-market is shortening in
modern production cycles, the verification of milling process is
becoming a more crucial stage in the whole manufacturing [1].

The ultimate goal of milling simulation is to predict results of
the workpiece as realistically as possible prior to machining, not
only with macrosurface information but also with microsurface
information. For instance, the in-process workpiece is categorized
into the macrosurface information; however the accuracy of
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macrosurface mainly depends on the exactness of the swept
volume (SV) of a moving cutter and the representation model of
the workpiece in space. Furthermore, it is difficult to calculate if
the cutter undergoes both rotation and translation motion. Since
a series of partial differential equations, including trigonometric
functions, is to be solved, it is not usually possible to calculate
the exact SV within an acceptable execution time. Besides this,
SV should be continually subtracted from the workpiece geometry
in order to enable verifying NC programs. Usually the volume
subtraction is realized with ease through the CSG (Constructive
Solid Geometry) operation for three-axis machining but it is
quite a challenging problem for simultaneous five-axis motion [2].
Accordingly, the SV of a cutter undergoing five-axis motion is
represented approximately by the sum of pure translation volume
and pure rotational volume in the NC simulation tools [3–5].

2. Related work

Several fundamental developments in the past decades have
led to a better understanding of general SVs. The underlying
formulation for characterizing the generated SV has appeared
under different names in various fields and context. Some
examples are: the determination of collision-free trajectory
between the moving objects and static obstacles [6], the design
of moving arms for robots [7], the representation of the boundary
of moving objects for visualization and computer graphics [8],
the formulations for modeling sweep procedure [9], and the
calculation of the volume’smass properties for solidmodeling [10].
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There are also several methods for formulating SV for a cutting
tool. The geometry of the SV can be extremely complex if the
orientation of the tool axis changes continually. In fact, such
geometry is out of the range of the modeling capacity of the
conventional solid modelers [11,12] which are based on the CSG
representation technique, because the SV cannot be represented
with prismatic geometries such as cylinders, cones and spheres,
etc., when the cutter undergoes simultaneous five-axis motion or
self-penetration (SP) of the tool body occurs. Their classification
depends on accuracy, robustness and simplicity, and they are
classified into discrete or analytic, approximate or exact SV
representation. In the following subsections, relevant approaches
are categorized and explained in light of their strengths and
weaknesses. Some of them are being successfully applied in
practice.

2.1. Envelope theory and tangency condition

Wang et al. [13] present a method for modeling SVs of the tool
described in moving frame by computing the tangency condition
that the Jacobian determinant vanishes [7], or geometrically
speaking, the instantaneous velocity v(P) at a surface point P of the
generator is perpendicular to the surface normal n(P) at P [14–16]:
f = v(P) · n(P) = 0, P ∈ Φ(t), t ∈ R. (1)

Based on this tangency condition (Eq. (1)), trigonometric
differential equations are solved to find the time-dependent
envelope curves. The assumptions of this approach is, however,
that (1) the trajectory of the cutting tool is piecewise differentiable,
and (2) the boundary of the generator is a regular surface, which
means that it has no sharp points or edges. Moreover, Wang et al.
have not handled the degenerate case: that is, self-intersection of
the cutter.

Chiou et al. [17,18] introduce the 3D shape-generating profile
method, which uses the tangency condition f of the surface normal
n at the tool surface point P and the moving direction vector v of
the cutter which is modeled with 7 parameters [19], at a cutter
contact (CC) point. The deficiency of this approach, however, is
that the constant cutter velocity v has been used. It might be
computationally simple, but this method is not correct because
the cutter velocity is not constant, but varies continually according
to the location on the cutter surface. Therefore, it intrinsically
includes the computational fault. The three-dimensional shape-
generating profile method was revised and later published in
Ref. [20]. In this revision, the machine configuration and tool
movements defined in the NC program are considered, and the
tangency condition f = n(P)·v(P) = 0 is upgraded,which consists
of the surface normal n(P) and the movement vector v(P) of an
arbitrary point P on the cutter surface.

A similar work to Wang et al. [13] and Chiou et al. [17]
has been done by Du et al. [21–23]. In this work, they adopt
the method of moving frame introduced by [13], as well as the
method of explicit closed-form representation, introduced by [17],
to formulate envelope profile for five-axis toolmotions. The partial
extension is dedicated to solution analysis and special case analysis
of generalized cutters for five-axis toolmotions by using rigid body
motion theory [24] and envelope theory [25]. SV is modeled in the
framework of an open source [26]. Because SV and raw stock are
represented by non-uniform rational B-spline (NURBS) surfaces,
whereas cutting simulation is conducted by Boolean subtraction
between SV and raw stock, the execution time is too expensive to
realize the machining simulation under a proper cycle time.

2.2. Sweep-envelope differential equation (SEDE)

Blackmore et al. [27,28] introduce the sweep-envelope differ-
ential equation (SEDE) in order to overcome the deficiency of
envelope theory [29]. The fundamental idea behind it is that SV of

the cutter may be formed by some self-intersecting envelope sur-
faces and that envelope theory is essentially local in nature. SEDE
requires the existence of a object M(t) := {x | f (x, t) = 0} mov-
ing along the trajectory σt(x) = ξ(t) + A(t)x in the fixed frame,
where x = (x, y, z), t is the time; ξ(t) a position vector and A(t)
an orthogonal 3 × 3 matrix. The object M is represented with the
implicit equation f , which is to be closed and bounded with a
smooth boundary surface ∂M . That is to say, f is negative in the
interior ofM , zero on ∂M and positive in the exterior ofM . Usually,
a smooth function f characterizing anobjectM is not a priori. Hence
the smooth approximation of piecewise smooth boundary surface
∂Mi for the ith tool component is provided by implicit polynomial
equations for which parameters should be determined empirically
and elaborately.

The power of the SEDE method is that the main portion of the
SV boundary can be generated consequently once the orbits of the
initial grazing points of an object are obtained by solving the SEDE.
The disadvantages of this approach, however, are that the SEDE
is based on complex mathematical backgrounds, such as partial
differential equations, advanced vector calculus, etc. Moreover,
since the initial grazing points are calculated after the cutter is
triangulated (or approximated) under a certain given tolerance,
initial grazing points are displaced from the actual cutter surface,
which in turn affects the accuracy of the SV calculated.

2.3. Imprint method

Sheltami et al. [30] regard the SV of toroidal cutters rotating
about a point on the extension of the tool axis as the superposition
of ‘‘generating circles’’, which are circular ends at the bottom
of toroidal cutters. The side of the cutter, which is made up of
sectional curves of the tool surface above these circles is added
to the superposition of generating circles in order to generate the
swept surface of the moving cutter. These side and bottom curves
represent imprints of the cutter onto a workpiece surface. It is
assumed that during the tool movement the tool axis remains
strictly on the feed plane that includes the feed direction and the
tool axis, and that the type of cut is a pure rotation in the feed plane
along the feed direction. Therefore the general motion type which
involves twists and turns in space is not dealtwith and the practical
application of the ‘‘generating circles’’ technique is thus severely
limited.

Roth et al. [31,32] build further upon concepts developed by
Sheltami et al. [30]. First, they observe and employ aspects of
the silhouette method [33] to identify imprint curves for five-axis
motion by using pseudo-inserts of a fillet-end mill. The pseudo-
inserts are introduced to calculate the approximate direction of
motion for points on the cutter. A point P on each pseudo-insert
is on an imprint if the moving direction of P lies in the tangent
plane of the torus at P . They approximate this tangency condition
with the cross product method, saying that the imprint curve
can be obtained from the cross product of the normal vector
to the plane of the insert and the local direction vector of the
center point of the insert. Important to note, however, is that the
instantaneous velocity vector should have been used instead of the
approximate local direction vector to obtain the exact points on
imprint curves. Furthermore, the approach is applicable only to the
toroidal bottom and not to the side of the cutter and inductively
validated by experiments and simulations.

Mann and Bedi [34] generalize the cross product imprint
method for the toroidal cutter of Roth et al. [32] to five-axis
motion of the cutter which is a body of revolution. They explain
how the cross product method produces graze points with an
alternative interpretation of the tangency condition (Eq. (1)): For
a surface of revolution S, a compact sphere tangentially contacting
the rotational surface is investigated, whose center is O and radius
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