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ABSTRACT

Productivity and industrial product quality improvements entail a rational tolerancing process to be
applied as early as product design. Once functional conditions are defined, an optimal specification for
each component in a mechanical system is to be developed. Despite numerous studies in this area, the
problem is still far from solved. It may be decomposed into two stages: development of specifications
based on standards, or qualitative synthesis, and calculation of tolerances. To the extent that these two
sets of problems are related, we propose to address them in parallel. In this paper, we present an original
method that enables us to solve these two problems for the case of serial assembly (stacking) without
clearances. This method is based on the use of influence coefficients to obtain the relationship between
the functional tolerance and the tolerances associated with the geometry of the mechanism’s interface
surfaces. We will describe a calculation algorithm that helps obtain influence coefficients solely from the
assembly’s geometric definition. Then, we will show that under our working hypothesis, this relationship

is piecewise linear.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Current methods of 3D tolerance analysis that are used in Com-
puter Aided Tolerancing software mostly rely on parameterized ge-
ometry. Such geometry is defined in 3D by way of a variational or
parametric CAO model. In general, the objective then is to deter-
mine the relationships between variations in parameters used to
describe the geometry and variations in the variables associated
with the functional conditions. A functional condition is most of-
ten described by limits imposed on variables as a result of param-
eters, such as clearance or distance between two points on two
functional surfaces. A component specification with tolerances
compliant with ISO or ASME standards assures a large number of
functionalities but does not translate into tolerances that directly
affect design parameters. The location of a hole, for instance, may
be defined in Cartesian coordinates with respect to two orthogo-
nal planes and using two dimensional parameters but a functional
tolerance on the position of the hole axis may define a cylindrical
tolerance zone which cannot be described by independent bounds
on the two parameters.

In this paper, we propose a model and a method which help in
the case of component stacking analytically to get the relationships
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between the variables that define functional conditions and the
values of tolerances on position and orientation to obtain the
best functional fit and conformance to standards. A synthesis
of tolerances consists in developing specifications best suited to
functional requirements. Our method compares specifications of
various types and helps select the most appropriate ones but also
to allocate the values of tolerances to the assembly’s components.
This problem arises for the designer at the preliminary design
phase where it is possible to study the effects of the selected
geometry on the accuracy required to satisfy geometric conditions
as well as during detail design where necessary and sufficient
standard specifications have to be stated on the final drawings.

We propose an original method of calculation to obtain the
relationships connecting tolerance tc, on the functional condi-
tion to tolerances tps associated with surfaces s of mechanical
components p.

Thus, we propose a new calculation algorithm helping express
the relationship in linear form (Eq. (1)) wherein c, are referred to
as “influence coefficients”:

b =) Cps.lps. (1)

This linear relationship is well known for unidirectional dimen-
sion chains. Anselmetti notes that in three dimensions a study of
simple examples helps obtain this relation but acknowledges the
difficulty for the more general cases [1]. A more complex exam-
ple is described by Jian et al. wherein the influence coefficients are
calculated analytically [2]. But as far as we know, the exact condi-
tions for which this linear relationship is valid or a method to get
the coefficients in the general case have never been presented.
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We will show that the value of influence coefficients cy;
depends in the general case on the selected allocation of tolerances.
In fact, this relationship is piecewise linear (in the research
hypotheses to be defined below).

The three groups of tolerancing problems listed by Salomons [3]
- specification, tolerance analysis, and tolerance synthesis - are
closely related, and synthesis cannot be handled in isolation from
the other two. That is why we propose to define an approach that
will allow qualitative tolerancing (development of specifications
and reference systems) and quantitative tolerancing (values of
tolerances) to be performed simultaneously. Thus, this method will
help optimize the overall tolerancing of a mechanism from the very
start of the digital process.

Following a review of literature, we will examine the case of a
component stack with no-clearance contact, and then look at the
effect of possible clearances at the interfaces. The case of parallel
linkages will not be presented in this paper but the approach can
be generalized.

2. Previous research

Most works on the synthesis of tolerances agree that there
are two phases. The objective of the first phase is to obtain
the equations that relate geometric deviations to variations in
functional conditions. We will refer to these as tolerancing
equations. The second phase follows one of two possible paths:
it either looks for the worst case or uses a statistical approach.
The worst-case method would have to take into consideration the
inequalities related to geometric deviations bounded by tolerance.
Under the statistical method, statistical data related to deviation
variables will be assumed as known and will be used to get
statistics on variables that describe the functional conditions.

2.1. Deriving tolerancing equations

One of the methods requires that relative positions be modeled
by transformation matrices and that an assembly loop, then, be de-
scribed by a product of these matrices. By expanding this equation
into a first-order Taylor series, we obtain the linear relations be-
tween variations in functional conditions and variations in the dif-
ferent variables that describe the geometry and the assembly [4].
In the direct linearization (DLM) method presented by Chase, all
linear and angular geometric variations of contact surfaces can be
taken into consideration [5].

Franciosa, for his part, proposes a numerical procedure to
simulate assembly constraints using the formal tool of linearized
transformation matrices [6].

These equations can also be obtained by using torsors. Ballot
and Bourdet define two types of torsors [7]: deviation torsors
that describe variations in geometry and linkage torsors that
describe the small displacements allowed by linkages with or
without clearances. For each linkage, the relation between surface
displacement torsors is written as follows. In the mechanism'’s
global reference frame R with surface S, belonging to part P; and
forming a linkage with surface S, of part P,, one would write
(Eq. (2)):

{Tsqs,} = (UTsqyp} + {Tpy rY) — ({Ts,ypy} + {Tpy R0 (2)

By removing the indeterminate variables which correspond
to the degrees of freedom of the linkages in question, we get
compatibility equations for every linkage that makes up the
mechanism. From this, a linear relationship is obtained associating
small displacement torsor components for each interface surface
to those of a terminal surface to which the functional condition is
applied [8].

This same formal tool is used in manufacturing to determine
relative deviations in component surfaces based on the knowledge
of the manufacturing process and the deviations specific to each
machining operation and to each mount [9].

The advantage of the method is that it automatically eliminates
variables that represent linkage degrees of freedom whereas other
methods perform this elimination implicitly through appropriate
parameter selection.

Laperriere describes geometric variations through components
of small displacement torsors in a single reference frame. A
kinematic loop closure equation is a relationship between its
torsors. To get scalar relations (6 scalar equations per loop), the
torsors have to be expressed in terms of the same point and
projected onto the same vector basis. This model is referred to as a
Jacobian-torsor model [10].

2.2. Tolerancing inequalities

Tolerancing equations, whether obtained by direct linearization
or from torsors, can be used for statistical analysis. It is assumed
that most frequently geometric variations and displacements in
the linkages are independent random variables. The statistics
for the resultant variable characterizing the functional condition
are then computed analytically or through the Monte Carlo
method using hypotheses regarding each variable’s distribution
function [4,8]. In reality, clearance configurations are frequently
unknown, clearances are a positive for the assembly, and,
consequently, do not play the same role as geometric variations
which are a negative for the assembly. This is demonstrated by
Dantan in [11]. On the other hand, these equations do not show
the relationships between geometric and functional tolerances.

Therefore, contact conditions within the linkages and toler-
ances should be modeled using deviation inequalities. Assembly
conditions will be verified in the worst case if the system of equa-
tions and inequalities is compatible. Laperriere and Desrochers
model tolerances by bounding deviation torsor components. The
Jacobian-torsor model provides them with a linear relation be-
tween deviation components. The effect of each tolerance on
compliance with the functional condition may then be expressed
aiding the designer in optimizing his or her tolerancing [12]. The
modeling method proposed by Teissandier et al. is very close
to this model [13]. However this method does not account for
the cross-coupling between small displacement components for a
given standard tolerancing and, hence, runs the risk of producing
excessive quality. In fact, the maximum values of small displace-
ment components assuring compliance with the geometric speci-
fications are not independent.

Petit and Giordano model ISO tolerances using inequalities
with small displacement torsor components and provide a
geometric representation of each tolerance zone in the form of
a convex envelope or a polytope referred to as the deviation
domain [14]. Then, deviation components are represented by
deviation domains whereas contact conditions are modeled by
clearance domains [15]. Davidson uses a different formal method
but obtains the same convex envelopes that he refers to as T-
maps [16]. The difference between the two models is formal.
Whereas the domains exist in the torsor space, the T-maps evolve
in the parametric space. The former is a vector space with a
dimension of at most 6, and geometric property deviations are
modeled by parameterizing the domains. The T-map space, on
the other hand, may include dimensional components to handle
maximum material, for instance [17]. In both the cases, worst-
case tolerance stack-up will be modeled by the Minkowski sum of
tolerances. When the number of parts is large and the shape of the
tolerance zone complex, the computation of the Minkowski sums
presents a problem because of combinatorial explosion. Using the
T-map model, Jian et al. use an example to get the analytical
relationship between the tolerances in the form of Eq. (1).
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