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suppress the noise effect in the resulting point-set surface. This is accomplished by controlling spatial
variation of residual errors between the input data and the resulting point-set surface and offsetting any
systematic bias. More specifically, this method first reduces random noise of input data based on spatial
autocorrelation statistics: the statistics Z via Moran’s I. The bandwidth of the surface is adjusted until the
surface reaches desired value of the statistics Z corresponding to a given significance level. The method
then compensates for potential systematic bias of the resultant surface by offsetting along computed
normal vectors. Computational experiments on various point sets demonstrate that the method leads
to an accurate surface with controlled spatial variation of residuals and reduced systematic bias.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents an accurate method for computing point-
set surfaces from input data that can suppress the noise effect
in the resulting point-set surfaces. Point-set surfaces (PSSs) are
continuous surfaces defined directly from point sets. Since its
original inception [1-3], the PSS and its many variants have been
widely used in various graphics, visualization, geometric modeling
and engineering applications. For example, we have applied the
PSS in the context of computer-aided design and manufacturing
and developed a new approach termed direct digital design and
manufacturing [4]. This approach can enable direct digital design
and manufacturing from massive scanned data, by passing the
usual CAD model reconstruction. This includes the use of PSSs for
direct rapid prototyping [5], NC machining [6], and direct Boolean
intersection between CAD geometry and acquired geometry [7].
The projection operation in defining PSSs can also be applied
for drawing curves onto digital surfaces in point-based modeling
[8-10].

However, despite the broad usage of PSSs and its wide variants
(for example, ir-type M-Estimators [11] and the forward search
algorithm [12] have been used to improve the shape quality of the
resulting PSSs), thus far there has been limited work on examining
the spatial distribution of residual errors of the resulting PSSs.

Our work in this paper assumes that the input points are
points sampled from object surfaces contaminated with random
noise. The premise of this work is the observation that, when the
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residual errors of input points with respect to the reconstructed
PSS approach spatially random, the corresponding PSS approaches
the true surface. Our approach is based on Levin’s PSS [1]. We
obtain the resulting PSS in a two-phase approach. We first vary the
bandwidth of the PSS until the statistics Z and Moran’s I (measures
used for characterizing the spatial randomness of residual errors
between the input data and the resultant PSS, which are introduced
in Section 3) reach a specified random level. We then compensate
for potential systematic bias by offsetting the points in the amount
of mean error along the computed corresponding normal vectors.

Moran’s I and corresponding statistics Z have been used in three
dimensional coordinate metrology to examine randomness of
geometric errors of B-spline surfaces [ 13]. However, in this paper,
we reveal that controlling the randomness alone does not preclude
systematic bias (as shown in Section 4.3). This observation has led
to the second phase (the offsetting operation) in our method.

Various computational experiments demonstrate that, through
controlled spatial variation of residual errors and the offset of
systematic bias of the mean error, accurate PSSs can be obtained
for input points sampled from various freeform shapes.

The remainder of the paper is organized as follows. Section 2
reviews related work on PSSs. Section 3 introduces Moran’s I and
corresponding statistics Z to measure the randomness of spatial
patterns. Section 4 presents a method to compute the randomness
of residuals in the reconstructed PSS and describes how to offset
the potential bias in the surface. Section 5 details the proposed
point-set surface reconstruction method. Experimental results are
given in Section 6. Finally, conclusions are given in Section 7.

2. Related work

A point-set surface is a continuous surface defined directly from
a point set. Given a point set P = {p;, i = 1, ..., n}, the original
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PSS is defined in two steps [1]: an MLS (moving least squares)
projection procedure and a polynomial fitting procedure. First a
local plane H = {x|n-x — D = 0, x € R?} is found by minimizing
the weighted sum of squared distances

> (i -n—D)*0(q. py).
i=1

where q is the projection of x onto H, 6(q, p;) is usually a Gaussian
weight function with bandwidth h:
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After H is found, the second step finds a local polynomial by taking
the H as the reference plane and using a similar weighted least
squares method.

Amenta and Kil [3] generalized the MLS projection procedure
via the concept of extremal surfaces. The resultant surface of the
MLS projection is represented by an implicit function which is the
product of a vector field n and the gradient of an energy function

e(x, n(X) =Y _((x—p)'n®)’0(x, p).
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Such a surface definition for the MLS surface is conducive to
calculating surface characteristics such as curvatures [ 14].

Since the original definitions, many variants of PSSs have been
developed. They differ, for example, in the strategies used to
specify bandwidths (sample density [15], local feature size [16],
curvatures [17]), in the surface models used to fit (planes [3],
spheres [18], polynomials [1]), in the weight functions (isotropic
and anisotropic weight functions [19], singular weight func-
tions [20]), and in fitting criterion (least squares criterion, ¥ -type
M-Estimators [11], the maximum residual criterion [12]), and so
on.

Using singular weight functions and a proper centroid func-
tion, PSSs can interpolate locations and derivatives at these lo-
cations [20]. The interpolatory PSS is suitable for noiseless data.
Algebraic PSSs [18] avoid the polynomial fitting procedure by fit-
ting spheres in the projection procedure. They use spheres instead
of general polynomials because spheres are easy to fit and there is
a close form of closest points on spheres. However, not all surfaces
can be accurately approximated locally by a sphere.

The bandwidth h in weight functions is an important parameter
for PSSs because a PSS with a larger bandwidth is smoother but
may smooth out small or sharp features, while a PSS surface with
smaller bandwidth is more faithful to the input data but may be
rough. The bandwidth h is typically selected according to sample
density of points, local feature size, curvatures, and so on.

Pauly [15] defined a bandwidth by the function hy = c/p(x),
where c is a fixed scale factor, p(x) : R> — R¥ is a continuous,
smooth function approximating the local sampling density. The
p is computed by first estimating the local sample density for
each point p; € P by pi = k/rl-2 and then interpolating by
standard scattered data approximation techniques, e.g. radial basis
functions, where r; is the minimum radius of the sphere centered
at p; and containing k nearest neighbors to p;.

Dey and Sun [ 16] take the bandwidth to be a fraction of the local
feature size and define their PSS by the weight function
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where X and p are closest points on the sampled surface S from
points x and p respectively, and |p| < 1 is a scale factor. The local
feature size I5(x) at a point ¥ € S is defined as the distance from
the point to the nearest point of the medial axis of S.

Wang et al. [17] used an optimal bandwidth in the second step
of the definition of Levin’s PSSs. They formulated the weighted
least squares polynomial fitting by the kernel regression and found
the optimal bandwidth by minimizing an approximated error
evaluating the kernel regression performance. In their formula, the
bandwidth is selected by combining noise level, sample density,
and curvatures.

In addition to the isotropic weight function given in Eq. (1), an
individual ellipsoidal weight function to each sample point is used
to define the PSS in [19], which is given by

wi(®) = 0(IH ' ® = p)D,

where 6 is a smooth monotonically decreasing function, H; is an
ellipsoid oriented so that one of its axes points into the normal
direction and the other two align with the principal curvature
directions. There also is the bandwidth selection problem for the
anisotropic weight function.

In order to preserve small features and be less influenced by
outliers, robust implicit PSSs are defined by combining implicit
PSSs with robust local kernel regression [11]. Instead of the
ordinary least squares criterion, y-type M-Estimators are used
to assign outliers less weight, i.e. additional weight functions are
used in the objective function. Besides the bandwidth used in the
spatial weight function, two additional bandwidths o, and o, are
introduced in the other two new weight functions. The o, is used
in the weight function of differences between predicted gradients
and sample normals. The o, is used in the weight function of
residuals of values of implicit surface function. Smaller values of
the o, lead to sharper results.

Based on the fact that sharp features are formed by multiple
surfaces, a forward search method is introduced in [12] to find
points of a smooth region by a maximum residual criterion. Sharp
features are identified by intersections of surfaces. The final results
are robust to outliers since the forward search method gets rid of
outliers from the fitting procedure.

The moving least squares interpolation scheme is analyzed
in[21], where a surface is reconstructed from point cloud data with
normal vectors. The surface is defined by the implicit function
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where 6;(x) is a weight function and n; is the normal vector at
point p;. Under some assumptions about sample densities, local
feature size, and the bandwidth of the weight function, the surface
F(x) = 0 will lie in neighborhoods of underlying surfaces. The
sizes of the neighborhoods are bounded by a value comparable
with the point space of the input point cloud. It can be proved
that the projection procedure converges and the resultant surface
is isotopic to the underlying surfaces [22].

In this paper, we follow the original definition of the point-
set surface [1], but with the explicit goal of ensuring that the
residual errors between the input points and the resulting surface
are spatially independent and free from systematic bias. Although
other filters such as bilateral filters on meshes [23] and feature
sensitive filtering [24,25] exist, our approach differs in several
aspects: (1) input model, our approach works directly on discrete
unorganized points versus polygonal mesh; (2) output model, our
approach generates a continuous, implicitly defined MLS surface,
rather than another polygonal mesh; (3) noise characteristic, our
approach explicitly quantifies the spatial correlation of the error
distribution through Moran’s I and statistics Z.
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