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Abstract

Physics and geometry based variational techniques for surface construction have been shown to be advanced methods for designing high
quality surfaces in the fields of CAD and CAGD. In this paper, we derive an Euler–Lagrange equation from a geometric invariant curvature
integral functional—the integral about the mean curvature gradient. Using this Euler–Lagrange equation, we construct a sixth-order geometric
flow, which is solved numerically by a divided-difference-like method. We apply our equation to solving several surface modeling problems,
including surface blending, N -sided hole filling and point interpolating, with G2 continuity. The illustrative examples provided show that this
sixth-order flow yields high quality surfaces.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Variational surface design. Surface fairing (see [12] for the
basics on the subject), free-from surface design (see [25]),
surface blending (see [27] and Fig. 5.3) and N -sided hole filling
(see [31] and Fig. 1.1) have been important issues in the areas of
CAD and CAGD. These problems can be efficiently solved by
an energy-based variational approach (e.g. [2,4,5,10,11,21,22,
24]). Roughly speaking, the variational approach is to pursue
a curve or surface which minimizes certain type of energy
simultaneously satisfying prerequisite boundary conditions. A
problem one meets within this approach is the choice of energy
models. Energy models previously used can be classified into
the categories of physics-based and geometry-based. The class
of physical models encompasses the membrane energy E1 and
strain energy E2 of a thin elastic plate (see [7,24]):

E1( f ) :=

∫
Ω

( f 2
x + f 2

y )dxdy, (1.1)
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E2( f ) :=

∫
Ω

( f 2
xx + 2 f 2

xy + f 2
yy)dxdy, (1.2)

where f (x, y) and Ω are the surface parametrization and its
domain, respectively. These energies are generalized as

E3(M) :=

∫
Ω

(α11r2
u + 2α12rurv + α22r2

v)dudv

+

∫
Ω

(β11r2
uu + 2β12r2

uv + β22r2
vv − 2rg)dudv

by Terzopoulos et al. in [23] for a parametric surface M :=

{r(u, v); (u, v) ∈ Ω}, which can be regarded as a combination
of E1( f ) and E2( f ), where α, β, g(u, v) are given parameters
and a vector-valued function. Recently, energy functionals
based on geometric invariants begin to lead in this field. As is
well-known, the area functional and total curvature functional
(see [13])

E4(M) :=

∫
M

dA, E5(M) :=

∫
M

(k2
1 + k2

2)dA

are the most frequently used energies, where k1 and k2 are
the principal curvatures. The minimizing surfaces of E4(M)

and E5(M) are minimal surfaces and Willmore surfaces,
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Fig. 1.1. (a) shows a head mesh with several holes. (b) shows an initial filler construction. (c) is the smooth filling surface, after 50 iterations, generated by using
Eq. (3.8).

respectively. The energy

E6(M) :=

∫
M

[(
dk1

de1

)2

+

(
dk2

de2

)2
]

dA

proposed by Moreton and Séquin in [17] punishes the variation
of the principal curvatures, where e1 and e2 are principal
directions corresponding to the principal curvatures k1 and k2.

The advantage of utilizing physics-based models is that
the resulting equations are linear and therefore easy to solve.
The disadvantage is that the resulting equations are parameter-
dependent. That means that when a reparametrization is
performed, identical surfaces may have different energies.
Energy models based on geometric invariants have no such
a disadvantage, and are not affected by the choice of the
parametrization. For certain special cases, these two kinds
of functional models are compatible when the surfaces
are isometrically parameterized. For instance, E4(M) and
E5(M) coincide with E1( f ) and E2( f ), respectively. In fact,
parametrization dependent functionals can be regarded as the
linear substitutes for geometric invariants. But in the general
cases this equivalency is no longer correct. Another critical
problem of the variational approach is how to determine
the surfaces which minimize these energy functionals. Two
approaches have been employed to solve this problem. One
method uses the optimization approach (see [11,17,20,24]),
which starts from a given surface, and searches iteratively for
a next surface that has less energy. Using local interpolation
or fitting, or replacing differential operators with divided
difference operators, the optimization problems are discretized
to arrive at finite dimensional linear or nonlinear systems.
Approximate solutions are then obtained by solving the
constructed systems. Another widely accepted method is based
on the variational calculus. The first step of this method
is to calculate the Euler–Lagrange equations for the energy
functionals, and then these equations are solved for the ultimate
surfaces. This method is superior to the optimization technique
in general, because optimization is lack of local shape control,
and computationally expensive.
Gradient descent flow method. Generally speaking, the Euler–
Lagrange equations of geometric energy functionals are highly
nonlinear. Except for a very limited number of simple cases
where these equations do give analytic and simple solutions,
directly solving the equations is difficult. The gradient descent
flow method is therefore introduced to circumvent this problem.

For instance, from the Euler–Lagrange equation H = 0 of
E4(M), which is also the definition of the so-called minimal
surface that has been investigated for the past 250 years, we
can construct a flow, called the mean curvature flow, ∂r

∂t = Hn.
Here n is the normal vector field of the surface, the auxiliary
variable t represents a time-marching parameter. When a steady
state of the flow is achieved, we obtain H = 0. Similarly,
for Willmore surfaces (see [26]) as well, the solution to the
Euler–Lagrange equation 1H+2H(H2

−K ) = 0 of the energy

E7(M) :=

∫
M

H2dA, (1.3)

can be constructed by this gradient descent flow method.
Note that functional (1.3) is equivalent to E5(M) with the
prerequisite that Gauss–Bonnet–Chern formula has been taken
into account. For the purpose of volume-preserving for closed
surfaces, surface diffusion flow (see [16]) ∂r

∂t = 1Hn is
sometimes employed, which can be regarded as a simplified
version of the Willmore flow.
Continuity. It is well known that the second-order flows, such
as the mean curvature flow or averaged mean curvature flow
(see [8]), yield G0 continuous surfaces at the boundaries of
the constructed surfaces. Fourth-order flows, such as surface
diffusion flow and Willmore flow ([14,26]), result in G1

continuity. However, a higher order continuity is sometimes
required in the industrial and engineering applications. For
instance, in the shape design of the streamlined surfaces of
aircraft, ships and cars, G2 continuous surfaces are crucial.
Therefore, higher order flows need to be considered. On this
aspect, Xu et al. have utilized a sixth-order flow in [31] to
achieve G2 continuity and Zhang et al. have used another sixth-
order PDE in [32,33] to obtain C2 continuity. A sixth-order
equation is also proposed in [3] by Botsch and Kobbelt to
conduct real-time freeform modeling. But all these sixth-order
flows and PDEs are neither physics-based nor geometry-based
in the sense mentioned above.
Our contributions. In this paper, a sixth-order geometry-based
PDE is introduced. It is derived from the Euler–Lagrange
equation of the energy functional

F (M) :=

∫
M

‖∇ H‖
2dA, (1.4)

which punishes the total variation of mean curvature. This
functional is similar to but different from the functional
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