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Bayesian inference is an emerging statistical paradigm and is becoming an increasingly used alternative to
frequentist inference. Unfortunately, little is known about the efficacy of Bayesian inference and how it relates
to the historical methodology of evaluating fisheries related models. Mortality information is routinely used in
fisheries management to describe fish population abundance over time and has been historically estimated
using catch curves and frequentist inference (i.e., maximum likelihood estimation). The objective of this study
was to compare frequentist and Bayesian inference approaches to estimate instantaneous mortality (Z) from a
hierarchical catch curve model. The data used in the comparison were from a long term monitoring program
of yellowperch Perca flavescens from southern LakeMichigan in addition to a simulated datasetwhere parameter
estimates were compared to known values. Point estimates of Z were similar among both methods. Similarly,
Bayesian inference 95% credible intervals were concordant with frequentist 95% confidence intervals. However,
the root mean squared error of frequentist inference increased at a higher rate than Bayesian inference with
increasing variability in the simulated dataset. Our study builds on the literature that seeks to compare results
between these twoparadigms to assistmanagers tomake the best decision possiblewhendecidingwhat statistical
paradigm to employ.

© 2014 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.

Introduction

Bayesian inference is a statistical inference paradigm that describes
probability differently than traditional frequentist inference (Elison,
1996). Frequentist inference treats parameters as fixed unknowns, the
data as random, and inference is drawn from 95% confidence intervals
that are based on hypothetical replicates. In contrast, with Bayesian
inference, parameters are random, data are considered fixed, and
inference is drawn from posterior distributions of a parameter given
the data, the model, and the prior belief about the parameter. Because
Bayesian inference relies on specification of prior distributions,
they are often considered subjective. Fortunately, much has been
devoted to this subject, including non-informative priors (Berger, 2006).
For example, non-informative prior distributions result in posterior
distributions that are largely due to the likelihood function and thus
are generally similar to the results of frequentist inference when
evaluating simple models (e.g., linear regression). For a thorough
review of Bayesian inference, see Gelman et al. (2004), Carlin and
Louis (2008), and Kruschke (2011).

Bayesian inference is rapidly becoming an increasingly usedmethod
to address a variety of environmental science problems (Buckley et al.,
2010; Fitzpatrick et al., 2010; Hilley and Young, 2008; Lee, 2008;

Reckhow, 1990; Vivó-Truyols, 2012). Within ecology and fisheries,
Bayesian inference has been used to disentangle the relationship
between catch and detectability (McCarthy et al., 2013), assess the
relationship between long-term fish assemblage structure with habitat
and niche breadth (Jacquemin andDoll, 2013), evaluate the relationship
of body size and geographic range with variation in abundance while
incorporating phylogenetic relationships (Jacquemin and Doll, 2014), es-
timate abundance of fish from mark-recapture experiments (Rivot
and Prévost, 2002), fit stock-recruitment models (Su and Peterman,
2012), estimate maturity parameters from a logistic regression
model (Doll and Lauer, 2013), estimate mortality parameters (Bunnell
et al., 2012), and determine efficiency and selectivity of gill nets
(Askey et al., 2007). In limnology, Bayesian networks have been used
to describe the processes involved in eutrophication in an estuary of
North Carolina (Borsuk et al., 2004). The Bayesian framework has also
been applied to the revaluation of phosphorus loads (Cheng et al.,
2010) and predicting hypoxic volume in the Chesapeake Bay (Liu
et al., 2011). Despite these examples, Bayesian inference is not in
common use, nor has it been extended to cover the plethora of math-
ematical and statistical models associated with contemporary envi-
ronmental research. Further, direct comparisons of results from
models fit using frequentist and Bayesian inference have not been con-
ducted onmany ecological models, including themortality processes of
fish, despite both frequentist (Dutterer et al., 2012; Olsen et al., 2004)
and Bayesian (Bunnell et al., 2012; Hall et al., 2004) methods being
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applied to such models. Such a comparison is needed to identify
discrepancies, particularly as these results are used for management
recommendations.

While the advantages of taking a Bayesian over frequentist
approach to statistical inference is well documented from many
perspectives (Austin et al., 2001; Broomhall et al., 2010; Kruschke,
2010, 2013;Wagner et al., 2013), acknowledging specific differences
in model fittingwith small datasets is warranted.With limited informa-
tion, Bayesian treatment using informative priors, a more ecologically
realistic model, or sharing information across groups in a hierarchical
framework minimizes biased parameter estimates when compared
to frequentist models. For example using the Bayesian framework,
phylogenetic accuracy increased creating a more ecologically realistic
model (Alfaro et al., 2003), bias in spawning stock biomass from
fisheries stock assessment decreased using uniform priors on all
parameters (Nielsen and Lewy, 2002), and bias in parameter estimates
was reduced in amultilevelmodel by sharing information across groups
(Stegmuller, 2013). Using small or limited datasets in a hierarchical
framework, Bayesian inference provides an advantage as the models
converge more often (Doll and Lauer, 2013). Finally, frequentist
inference of catch curves has resulted in missing results due to small
sample size (Jackson and Noble, 2013) while Bayesian inference in a
hierarchical framework has been used to estimate parameters of
catch curves due to the known limitations (Bunnell et al., 2012).
These shortcomings of frequentist inference methods highlight the
need to evaluate and compare Bayesian inference as an alternative
method of statistical inference.

An additional advantage of theBayesian approach is the treatment of
multiple comparisons and multilevel models. Under the frequentist
paradigm, multiple comparisons are typically conducted by treating
the variable as random. However, this treatment focuses on the overall,
rather than the individual group effect. The only option of determining
the individual group effect is to treat the variable as fixed. By doing so,
unfortunately, the inherentmultilevel structure of the data is neglected,
which can result in biased parameter estimates (Gelman andHill, 2007).
Further, if the random effect was treated as a fixed effect, the post hoc
multiple comparisons require the investigator to adjust their cut-off
for significance for each comparison being made, typically using a
Bonferroni correction or false discovery rates (Benjamini, 2010). Thus,
the results would be influenced by the intention of the investigator
(i.e., the cutoff for significance is different based on the number of
comparisons the investigator intends to make). In contrast, Bayesian
approaches to multiple comparisons are not subjected to these
problems (Kruschke, 2011). With Bayesian inference, the posterior
distribution of the parameters is the full joint posterior probability
distribution (given themodel, data and prior distribution) that specifies
the probability the coefficient lies in a specific interval. There is no need
to make adjustments to the decision criteria for significant differences
based on the investigators' intentions of the study.

Mortality information is routinely used for successful management
of fish populations and describes the rate at which population catch
declines. Mortality rate is related to recruitment, growth, and harvest
(Quinn and Deriso, 1999) and can be expressed as any decline in a
group (e.g., year class or cohort) of fish over a constant time period
(e.g., year). For example, the catch of the 2000 year class is estimated
over time at age 0 (2000), age 1 (2001), age 2 (2002), etc: and the age
structured data is used to describe the rate of decline. The instantaneous
mortality rate (Z) is a metric that is typically used to describe the rate
the population catch declines.

Catch curve models are typically used to estimate Z (Chapman and
Robson, 1960; Robson and Chapman, 1961). Assumptions of the catch
curve model include: constant recruitment over time, constant fishing
mortality, constant natural mortality at age, and constant selectivity
(Chapman and Robson, 1960). Unfortunately, these assumptions are
rarely met and failure to meet these assumptions can result in biased
and imprecise estimates. Combining samples from multiple years has

been suggested to solve this problem (Ricker, 1975); yet, this technique
imposes new assumptions, including each combined year class strength
is similar. Further, without incorporating a single–multiple year hierar-
chical structure into the model, the investigator would not be able to
determine trends of individual year classes. Attempts have been made
to account for violations of some assumptions by incorporating
age-specific natural mortality (Thorson and Prager, 2011) or adding
a selectivity term (Cotter et al., 2007; Thorson and Prager, 2011).
Despite these limitations, the catch curve model remains a widely
used method to describe mortality processes (Dutterer et al., 2012;
Newman et al., 2000; Olsen et al., 2004).

The objective of this study was to compare frequentist and Bayesian
inference approaches to estimate instantaneous mortality (Z; Ricker,
1975) from a hierarchical catch curve model for two fisheries datasets:
one long term and one simulated. Specifically, we compare the ability of
the model to converge (i.e., estimate parameters), point estimates
(frequentist mean parameter estimates and Bayesian median values of
the posterior distribution), and precision of the estimates (frequentist
95% confidence intervals and Bayesian 95% credible intervals). We
hypothesize that Bayesian inference will result in interpretable
estimates for all year classes while frequentist inference will result
in insignificant or non-calculable estimates when substantial
noise is present or sample size is limited. We further hypothesize
that frequentist mean estimate of Z will be similar to Bayesian
median values of the posterior distribution. Although these point
estimates will be similar, we hypothesize that Bayesian inference
will provide more precise estimates of Z (i.e., narrower 95% credible
intervals).

Methods

Yellow perch data

We used two datasets to compare statistical inference paradigms;
including one long-term (26 years) and one simulated dataset. The
first is from the Ball State University's long-term monitoring
program of yellow perch Perca flavescens from southern Lake Michigan
(Lauer and Doll, 2012). Yellow perch were sampled from up to three
near shore sample zones between 1984 and 2009 semi-monthly using
a semi-balloon bottom trawl. From 1984 to 1988, two sites were
sampled and three sites were sampled from 1989 to 2009. Nighttime
bottom trawling was conducted at the 5-m depth contour for a total
of 6 h of effort at each site each year. This resulted in a total effort of
12 h from 1984 to 1988 and 18 h from 1989 to 2009. Only age-2 to
age-9 fish were used to determine year class catch per unit effort
(CPUE) at age by year, younger fish are not fully recruited to the trawl
(Shroyer and McComish, 2000). Up to 10 fish per 10 mm length class
per month were aged. Scales were used from 1984 to 1993 and opercu-
lar bones were used from 1994 to 2009 and aged independently by two
readers. Aging methods were changed due to opercular bones having a
lower coefficient of variation (Baker and McComish, 1998). Discrepan-
cies were discussed between both readers until a consensus was
reached. Un-aged fish were assigned an age using yearly and monthly
specific age–length keys.

Simulated data

One hundred year classes of fish were simulated, each consisting
of between 3 and 10 observations. The number of ages per year class
was randomly assigned by independent draws from a uniform
distribution. Survival for each year class was randomly drawn from
a beta distribution and the slope was calculated as ln(survival).
Intercepts for each year class were randomly drawn from a uniform
distribution. Parameters of the age structure, beta distribution, and
uniform distributions were selected to be consistent with estimates
from the Ball State University yellow perch dataset. Linear predictors

42 J.C. Doll, T.E. Lauer / Journal of Great Lakes Research 40 Supplement 3 (2014) 41–48



Download English Version:

https://daneshyari.com/en/article/4398336

Download Persian Version:

https://daneshyari.com/article/4398336

Daneshyari.com

https://daneshyari.com/en/article/4398336
https://daneshyari.com/article/4398336
https://daneshyari.com

