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We use Dynamic Linear Models (DLM) to analyze the time series of annual average Lake Superior water
levels from 1860 to 2007, as well as annual averages of climate drivers including precipitation (1900-2007),
evaporation and net precipitation (1951-2007). Our results indicate strong evidence favoring the presence
of a systematic trend over a random walk for Lake Superior water levels, and this trend has been negative in
recent decades. We then show decisive evidence, in terms of improved predictive performance, favoring a
model in which the trend component is replaced with regression components consisting of climatic drivers
as predictor variables. Because these models use lagged values of precipitation or net precipitation as
predictors, the models can be used to forecast water levels, with the associated uncertainty, several years
into the future. We use several of the best fit models and compare one (2008) and two step-ahead (2009)
forecasts. The 2008 forecasts compare very well with the observed 2008 water level; the two step-ahead
2009 forecasts are offered as testable hypotheses. The Bayesian context in which these models are developed
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provides a rigorous framework for data assimilation and regular model updating.
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Introduction

The Laurentian Great Lakes provide numerous ecosystem
services that confer benefits throughout Canada and the United
States (Costanza et al., 1997). Many of these services are influenced
by fluctuating water levels. Water level extremes cause particular
problems; high water in the 1980s resulted in coastal erosion and
damage to structures near the shoreline; more recently low water
has impeded shipping, water extraction, and recreational activities
(Sellinger, 2008). Though current low levels may seem dire, it has
long been recognized that water levels have, at times, been much
lower than the present norm (Wilson, 1931). A recent analysis
revealed a period when water levels were so low that the lakes
became disconnected (Lewis et al., 2008). Because water levels have
been documented to vary greatly, it is important for communities
reliant on the services provided by these lakes to anticipate, and
adapt to, future water level changes.

Great Lakes water levels fluctuate on several characteristic
frequencies possibly related to recurrent, large-scale teleconnection
patterns (Cohn and Robinson, 1976; Ghanbari and Bravo, 2008;
Hanrahan et al., 2009; Wiles et al., 2009). As early as 1874 a positive
relationship with sunspots was identified (Dawson, 1874), and this
association was periodically debated until the 1940s (Hubbard, 1887;
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Nassau and Koski, 1933; Brunt, 1937; Wilson, 1946), when the
discussion faltered. More recently Sellinger et al. (2008) noted a
sunspot relationship in Lakes Michigan and Huron, but observed that
the relationship flipped from positive to negative in ~1940. Such
reversals have been documented elsewhere (Lawrence, 2002); this
reversal may explain the apparent lapse of literature discussion
regarding sunspots and Great Lakes water levels from the 1940s until
2008.

The highs and lows of cyclic fluctuations may impart temporary
stress to human populations as well as resident ecological commu-
nities; however native populations that have evolved over thousands
of years have become resilient to these regular changes and, in
principle, humans can identify cycles and plan for them (Stager et al.,
2007). Sustained trends present a different challenge, possibly
requiring continuous adaptation. Additionally, trends can be hard to
differentiate from periodic variability, leaving room for debate as to
whether resources should be allocated for adaptation when a trend is
suspected.

Following the high levels of the 1980s Great Lakes water levels
experienced an overall decline that was particularly pronounced from
1997 to 2000 (Assel et al., 2004). This decline was apparent even in
Lake Superior, although water levels have been regulated by
structures in the St. Marys River since the 1920s. The lower levels
attained since then have generally been sustained; however, Lake
Superior has rebounded from near-record low levels experienced in
late 2007 (Holden, 2007). Ongoing low levels are worrisome because
lower Great Lakes water levels are consistent with most climate
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change forecasts (Magnusen et al., 1997, Lofgren et al., 2002) raising
concern that recent declines are early indications of a long-term
pattern. The fact that this decline is mirrored in nearby seepage lakes,
suggests a common regional driver, with climate the most logical
perpetrator (Stow et al., 2008). Although Redway (1924) argued that
lake water level fluctuation is an unreliable indicator of “progressive”
climate change, more recently Williamson et al. (2009) proposed lakes
as ideal climate sentinels because they integrate and reveal climatic
signals occurring throughout their watersheds. The Laurentian Great
Lakes may be particularly informative in this regard because their large
watersheds and long hydraulic retention times integrate spatially and
temporally thus damping small-scale noise and making large-scale
climatic patterns more apparent.

To explore the climatic signals that are reflected in Lake Superior
water level fluctuations and evaluate if climatic data can be used to
make useful near-term water level forecasts, we investigated annual
average water level data, available from 1860 to 2007, in its entirety
(Model 1), and then the relationship between annual average water
level and potential climatic predictor variables (Model 2) which are
only available for shorter periods (precipitation from 1900 to 2007,
evaporation from 1948 to 2007, and net precipitation from 1948 to
2007). Because we evaluated up to a 3-year lag in predictor variable
relationships, Model 2 spans the period 1951-2007. Model 1 provides
a basis to differentiate random from progressive patterns while Model
2 explores whether the relationship with climatic drivers may better
explain the variability in Lake Superior water level than the simple
trends evaluated for Model 1, albeit for a more limited time span.
Additionally, to facilitate discussion, we analyzed trends in the
climatic predictors over the periods of record for which they are
available applying the same approach used to develop Model 1.

Although there are many approaches available to analyze time
series data, researchers commonly use linear regression models to
estimate time trends. With modern software linear regression is
extremely easy and in many applications a linear approximation is
adequate for the intended inference. However, time series data often
deviate from the assumptions that support inference using linear
regression (such as linearity and homoscedastic, uncorrelated
residuals) in which case summary statistics including slope coeffi-
cients, confidence intervals, and p-values may be misleading.
Ultimately, this situation can result in a poorly founded decision of
“statistical significance.” As an alternative, we analyzed Lake Superior
annual average water levels using Bayesian Analysis of Time Series
(BATS) software to estimate Dynamic Linear Models (DLMs) (Pole et
al., 1994). DLMs are similar in concept to linear regression but allow
model parameters to evolve, systematically, with time, capturing the
nonlinearity in the series. Additionally, the Bayesian framework
provides a probabilistic uncertainty estimate for each model param-
eter, which is not automatically conflated with a decision of
“significance” or “non-significance.” Instead, parameter estimates
and their associated uncertainty can be evaluated and decisions that
are appropriate for the problem under consideration can be made
(Zhang and Arhonditsis, 2008).

Methods
Data

Water level data for Lake Superior (1860-2007) are available from
the National Oceanic and Atmospheric Administration's (NOAA)
National Ocean Services database (NOAA, 2007). NOAA's Geodetic
Survey computes an International Great Lakes Datum (IGLD) every 25
years to account for iso-static rebound; presently, all the Great Lakes
are referenced to IGLD85. Monthly precipitation (1900-2007) and
evaporation (1948-2007) data were obtained from NOAA's Great
Lakes Environmental Research Laboratory's Hydrologic Database
(Croley and Hunter, 1994). Precipitation data were synthesized

using a Thiessen weighting approach to obtain a value for the
watershed.

Dynamic linear models (DLMS)

DLMs partition variation in the response variable (water level) into
three components: a trend, regression coefficients that describe the
relationship with predictor variables, and a random component (West
and Harrison, 1989; Lamon et al,, 1998). DLMs are similar to linear
regression models; however, DLMs allow model coefficients to change,
systematically, with time whereas linear regression models are based
on the assumption that model coefficients are static. With DLMs,
information from earlier time periods is discounted by adding
uncertainty as time progresses, based on the idea that newer
information is more relevant than older information to predict current
or near-future conditions. The discount factor is 6 which is equal to
1+ A, where A is the discount rate. For a discount factor 6 between
0 and 1, the information loss for each time interval is V;=6"V,_;.
With 6=1 the relationship becomes static with time like a linear
regression model; for a 5% information loss with each time increment,
6 is about 0.95 (Pole et al., 1994). As 6 approaches zero there is
effectively no memory from one time step to the next and the method
is similar to “connecting the dots.” Useful discounts are typically >0.8;
smaller discounts lead to models that make predictions based on only
the two or three most recent observations (West and Harrison, 1989).

DLMs can be used for both “online” forecasting (Lamon et al.,
1998), in which successive forecasts are based only on the data
preceding each forecast time period, as well as for “retrospective”
analysis (Lamon et al., 1999), which is based on all the data in the time
series. In contrast, many methods used to examine time series data,
such as linear regression, are strictly retrospective.

In the online analysis using DLMs, at any time t, posterior
information regarding the model parameters (6) is obtained by
combining prior information with information in the current
observation (the likelihood) via Bayes' theorem:

p(Y, = y:16)p(6,|D; 1)
p(Y =)

pO[De—1, ) = (1)

where D,_; denotes the state of knowledge at time t-1, the first term
in the numerator is the likelihood, the second is the prior distribution
(commonly referred to as the prior), and 6, is the state (parameter)
vector. The denominator is a normalizing constant that can be
dropped, allowing the equality from eq. (1) to be re-expressed as a
proportionality:

posterior o likelihood x prior. (2)

Retrospective analyses using DLMs, alternatively referred to as
filtering or smoothing, are useful to ask: “where has the process
under study been?” or “what happened?” (West and Harrison, 1989;
Pole et al., 1994). In retrospective analysis, we modify the posterior
distributions from the online analysis (eq. 1), considering later
information to obtain filtered distributions p(6¢D¢+x), where k is
some positive constant. This notation indicates that information
arising after time t informs our knowledge about 6,.

Evaluating how well alternative models capture data dynamics
requires quantitative criteria for model assessment. Several criteria
are available for model comparison and selection; many have a similar
basis, differing mainly in the degree to which model complexity is
penalized. We calculate the Akaike Information Criterion (AIC, Akaike,
1973) and the Bayesian Information Criterion (BIC, Schwarz, 1978) to
aid in selection between competing models and between discount
factors for a given model structure. Because AIC and BIC are deviance
based measures (a generalization of the variance or sum of squares),
models with lower values fit better than those with higher values. We



Download English Version:

https://daneshyari.com/en/article/4399055

Download Persian Version:

https://daneshyari.com/article/4399055

Daneshyari.com


https://daneshyari.com/en/article/4399055
https://daneshyari.com/article/4399055
https://daneshyari.com

