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a  b  s  t  r  a  c  t

We  use species  distribution  modeling  to  create  easily  testable  hypotheses  about  the  current  and  future
distributions  of Jamaican  frogs,  a little  studied  but  highly  endangered  group.  Our  models  simultaneously
represent  the  best possible  current  estimate  of  the  frogs’  ranges  and  provide  clear  guidelines  for  future
survey  work  and  habitat  preservation  efforts.  We  identify  areas  that  contain  the  highest  frog  biodiver-
sity,  the  highest  per-unit  area frog  conservation  benefit,  and  areas  that  are  putative  climatic  refuges
from  outbreaks  of  the  frog disease  chytridiomycosis.  In addition,  we  use  the  distribution  models  to  cre-
ate  a set  of  easily  falsifiable  predictions  about  frog  presence  or absence.  Testing  these  predictions  using
presence/absence  surveys  will  provide  management-ready  information  about  model  quality,  population
trajectories,  changes  in  realized  climate  tolerance,  and disease  presence.  We  present  a  method  of  gener-
ating  targeted  conservation  recommendations  that  will  be applicable  to many  little-studied,  cryptic taxa
worldwide.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Effective conservation management requires both money and
time. These resources are finite (Ehlers Smith, 2014), so managers
must prioritize their application. For many taxa, we have little data
on which to base our priority setting. An estimated 11% of fish,
33% of amphibians, 13% of reptile species have yet to be discovered
(Scheffers, Joppa, Pimm,  & Laurance, 2012). Of described species,
24.5% of amphibians, 15.2% of mammals, 18.3% of reptiles, 19.4%
of ray-finned fishes are listed as Data Deficient by the IUCN (IUCN,
2013). The future of many little-studied taxonomic groups is uncer-
tain, particularly considering the threats of global climate change
(Keith et al., 2014; Gerick, Munshaw, Palen, Combes, & O’Regan,
2014), habitat destruction (Yahaya, Attuquayefie, Owusu, Holbech,
& Ofori, 2013), and emerging infectious diseases (Fürst, McMahon,
Osborne, Paxton, & Brown, 2014; Heard et al., 2013). Thus, we must
get the greatest possible conservation value out of any available
data, in the understanding that it may  not be possible to collect
more. In many species, collection locations from museum records
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make up the bulk of the available data (McPherson, 2014). Here, we
use this presence-only data to direct future data-gathering surveys
and prioritize habitat for preservation.

Species distribution modeling algorithms take the collection
locations for a species and identify the values of a set of explana-
tory environmental variables occurring at those sites (McPherson,
2014). They return projected probabilities of presence for that
species across a predefined study area, dependent on known
explanatory variables. Provided that geographical distribution of
the species is well represented by the sampled sites, the model
should identify a hypervolume along the explanatory variable axes
that accurately represents the realized niche of the species of inter-
est (Hutchinson, 1991). The model will identify locations with
variable values that fall within the hypervolume as having a higher
probability of presence than those with values outside the hyper-
volume. The model returns an estimate for probability of presence
of the species of interest across the area of interest.

In practice, many confounding factors can affect the results of
an SDM. If unmeasured variables or historical events constrain the
range of the species, the projection may  extend beyond the true
range. Species may  be absent from areas predicted by niche mod-
eling due to extirpations, biotic interactions, or because their site
of origin is separated from another piece of viable habitat by a
barrier (Robinson et al., 2011). Due to the large number of factors
that can influence the results of species distribution models, in this
paper we  refer to their results as returning a projected geographi-

http://dx.doi.org/10.1016/j.jnc.2015.08.005
1617-1381/© 2015 Elsevier GmbH. All rights reserved.

dx.doi.org/10.1016/j.jnc.2015.08.005
http://www.sciencedirect.com/science/journal/16171381
http://www.elsevier.de/jnc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnc.2015.08.005&domain=pdf
mailto:iholmes@umich.edu
mailto:iah6@cornell.edu
mailto:kurt.mclaren@uwimona.edu.jm
mailto:byron.wilson@uwimona.edu.jm
dx.doi.org/10.1016/j.jnc.2015.08.005


I. Holmes et al. / Journal for Nature Conservation 28 (2015) 26–34 27

cal distribution, rather than a projected realized niche. Further, we
use the phrase “observed climate span” to describe the maximum
and minimum values of a given explanatory variable found at the
known collection locations. We  use this vocabulary to clarify that
our results are hypotheses about observable distributions and the
management best practices that can be inferred from them, rather
theoretical niche volume.

Despite these limitations, we investigate these methods because
they allow data analysis even in little-known species. In low-
information species, the majority of the available data may  come
from locality data attached to museum collections. The challenges
of using museum data are well documented, but for many species
there are few other sources of ecological information (Naimi,
Hamm,  Groen, Skidmore, & Toxopeus, 2014; Moudrý and Šímová,
2012). Species distribution modeling algorithms assume that the
data they are provided are a random sample of the complete niche
of the focal species (Phillips et al., 2009). This assumption may  not
be met  if the data are preferentially collected in one portion of
the species’ range over another. Due to the logistical constraints
of fieldwork, occurrence data are often collected along roads, or in
a radius around a central camp. While the spatial autocorrelation
in collection locations can be accounted for to an extent, it may  still
affect the predictions (Moudrý and Šímová, 2012). Despite these
limitations, common to many museum collections, our species dis-
tribution models can make explicit, management-ready ecological
predictions for little-studied groups of organisms.

In this paper, we acknowledge the limits of the available data.
Our aim is to design a framework for using the data specifically for
conservation managers. We  propose a first test of a framework for
data use loosely based on the philosophy of Bayesian statistics—we
begin with a prior assumption, compare it to data, and update
that prior to reflect the information in the data. In the absence
of data, managers have no prior knowledge about which habitat
patches have high conservation value. We  use the data to alter
our preconceptions to weight certain patches as more valuable.
The goal of data analysis is specifically to improve the manager’s
knowledge and potential to act in a beneficial manner, rather than
to approach a perfect geographical or climatic model for a given
species

We chose our three species-distribution modeling algorithms
to have complementary assumptions, such that if the assumptions
of one model are violated, those of the others may  not be. Max-
Ent uses a maximum-entropy learning algorithm to create niche
models from presence-only data (Phillips et al., 2004). It takes from
the mean and variance of the sampled climate variables, and builds
functions describing the relationship between the values of those
climate variables and the probability of presence of the species of
interest. The mean and variance of these functions must match the
sampled means and variances of the variable, and the functions
must be as uniform as possible (have maximum entropy). Proba-
bility of presence of the species at a given locality is calculated based
on the functions described for each climate variable (Phillips, Dudík,
& Schapire, 2004). The method is widely used for presence-only
data, making our results comparable to many other studies. Ran-
dom Forest (Breiman, 2001) and Boosted Regression Trees (Elith,
Leathwick, & Hastie, 2008) function by splitting the data into max-
imally uniform groups according to explanatory climate variables.
Random Forests draw random samples of data and explanatory
variables to build trees, then average predictions over those trees.
This approach avoids over fitting but can miss fine details. Boosted
Regression Trees use a similar tree building approach but focus
on placing difficult to fit data points, offering an opportunity to
use patchily collected records to best possible effect. In sum, we
believe that these three algorithms complement each other well,
and provide the best possible opportunity for producing immedi-
ately useful modeling results.

We focus on endemic Jamaican frogs, which are at risk from
all three types of threat (Wilson, 2011). These threats are disease,
specifically the fungal pathogen Batrachochytrium dendrobatidis,
invasive species, and habitat loss (Wilson, 2011). Many other taxa
are also known largely from museum collections and face simi-
lar conservation problems as the Jamaican frogs (IUCN, 2013). Our
methods can be generalized to these taxa. Jamaican frogs are an
excellent example of low-information group, as the majority of our
ecological knowledge about Jamaican frogs is drawn from locality
data from museum collections (Habel, Husemann, Finger, Danley,
& Zachos, 2014).

Jamaican frogs are an important component of their forest
ecosystems (Beard, Eschtruth, Vogt, Vogt, & Scatena, 2003). Their
extinction or severe reduction could have disruptive consequences
for many other species (Connelly et al., 2014). Jamaican frogs repre-
sent two endemic radiations within Jamaica, of seventeen species
of Eleutherodactylus and four of Osteopilus (Hedges 1989; Moen and
Wiens, 2009). Over its geological history, Jamaica has at some points
been comprised of two  separate islands, which now exist as moun-
tains on the eastern and western sides of the island, with low-lying
limestone karst forest separating them (Haq, Hardenbol, & Vail,
1987). Evolutionarily, the Jamaican Eleutherodactylus comprise two
old radiations, one on each former island, and a newer one in the
intervening low elevation forest (Hedges, 1989). Like the better-
studied Anolis radiations in the Caribbean, this natural experiment
could yield considerable insight about the process of evolution and
community assembly in island radiations. In order to be of use as
an evolutionary model system, the Jamaican frog radiation must be
protected.

Native species across the Caribbean are threatened by habi-
tat loss, including Jamaican frogs. Few species are able to survive
outside closed-canopy tropical forest. Climate change, both in
temperature and precipitation, is a stressor for many species world-
wide. Island species may  be particularly at risk, as they have
limited room to shift their range to match changing temperatures.
Finally, the amphibian chytrid fungus, which has caused world-
wide amphibian extinctions and declines (Eskew and Todd, 2013),
is present in Jamaica and will be an ongoing conservation concern.
With the goal of improving conservation outcomes, we present a
set of testable hypotheses that will allow managers to maximize the
use of available resources that can be devoted to habitat preserva-
tion or further data gathering. We  designed these hypotheses such
that they provide immediately actionable information whether
they fail or are supported.

1.1. Testable hypotheses

Hypothesis one: adding new sampling localities will not signif-
icantly change the predictions of the geographical distribution or
observable climate span for any Jamaican frog.

The predictive success of our models, and thus their utility for
further analyses, depends on the samples being as representative
as possible of the climate variables present full geographic range of
the target species. We  can test this hypothesis by establishing the
presence or absence of the target species in areas that are at the
edge of the predicted range of climate variation, in areas that have
one or more climate variables outside the sampled range for the
species. We encourage best practices for accounting for false neg-
atives, including use of occupancy models (Zipkin, Grant, & Fagan,
2012) and better understanding of each species’ thermal tolerance
in a laboratory setting (Ruiz-Aravena et al., 2014), when funds and
time allow. If we  find the species in this marginal area, we can
re-calculate the distribution model with the new, more extreme
presence data and iterate the hypothesis test until a predicted area
is free of the focal species, indicating that we have reached the limits
of model improvement using new data.
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