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a b s t r a c t

CAD modelers enable designers to construct complex 3D shapes with high-level B-Rep operators. This
avoids the burden of low level geometric manipulations. However a gap still exists between the shape
that the designers have in mind and the way they have to decompose it into a sequence of modeling
steps. To bridge this gap, Variational Modeling enables designers to specify constraints the shape must
respect. The constraints are converted into an explicit system of mathematical equations (potentially
with some inequalities) which the modeler numerically solves. However, most of available programs are
2D sketchers, basically because in higher dimension some constraints may have complex mathematical
expressions. This paper introduces a new approach to sketch constrained 3D shapes. The main idea
is to replace explicit systems of mathematical equations with (mainly) Computer Graphics routines
considered as Black Box Constraints. The obvious difficulty is that the arguments of all routines must
have known numerical values. The paper shows how to solve this issue, i.e., how to solve and optimize
without equations. The feasibility and promises of this approach are illustrated with the developed DECO
(Deformation by Constraints) prototype.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Industrial CAD software rely on an incremental B-Rep (Bound-
ary Representation)modeling paradigmwhere volumemodeling is
performed iteratively through high-level operators [1]. At a lower
description level, those modeling operators are based on Euler op-
erators acting directly on the faces, edges and vertices of B-Rep
models. In this way, designers do not manipulate low-level geo-
metric entities, but rather manipulate so-called structural and de-
tail features to shape directly the CAD models.

However, even if CAD modelers provide operators (e.g., pad,
pocket, shaft, groove, hole, fillet) to get rid of the direct use
and manipulation of canonical surfaces and NURBS [2], working
with a CAD modeler is almost procedural and requires a lot of
intermediate operations to obtain the desired shape of an object.
Using such aprocedural approach, designers have tomake amental
gymnastic to break down the object body into several basic shapes
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linked to the different operators of the CAD software. Thus, even
if a feature-based approach is used [3], modeling a complex shape
still requires a lot of operations. This is even truer when dealing
with free form objects for which the notion of free form features
does not correspond to current industrial practices.

Clearly, an approach closer to the designers’ way of thinking
is missing and there is still a gap between the shapes designers
have in mind and the tools and operators provided to model
them. Various approaches have been introduced to bridge this
gap: parametric modeling, feature-basedmodeling and variational
modeling approaches.

In parametric modeling, or parametric and feature-based
modeling [4], a shape is defined as a function F(U), where F is
some function, and U are its parameters. Designers specify with
some interactive graphical interface the function F as well as the
values of U parameters. Parameters U are geometric variables
(e.g. lengths, angles, tolerances, Cartesian coordinates) or material
properties (e.g. density, strength, cost). When the values of some
parameters in U are modified during the design process, the shape
is automatically updated while re-computing F(U). Most of the
time, only a part of F(U) is re-computed, using a dependence
analysis.
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Variational geometric modeling [4] goes a step further.
Designers specify constraints the shape F(U)must satisfy aswell as
the unknown parameters. Then, a numerical solver tries to satisfy
the constraints while computing values of unknown parameters of
U . When defining a 3D shape, the constraints are often geometric
constraints, which relate to different geometric primitives or
features. For example, they can be distances or angles between
(special points or axes of) geometric primitives or features,
incidence or tangency relations between parts of two geometric
primitives or features. In this case, their formal expression is simple
and can be easily computed. It leads to a system of equations,
most of the time algebraic. Numerous combinatorial or numerical
methods [5] were proposed first to detect the under-, over-, and
well-constrainedparts of this kind of systems, and second, forwell-
constrained systems (which have as many independent equations
as unknowns, and have a finite number of solutions) to decompose
them into irreducible subsystems and to assemble their solutions.

In practice, numerical methods like Newton iterations, damped
Newton or homotopy are used to solve irreducible subsystems and
to assemble the partial solutions. The numerical solver typically
starts from the previous values of U , read on some interactively
provided sketch, or on the previous state of an iteratively edited
shape.

Sometimes, some objective functions G(U) must be optimized:
for instance a cost, a weight or an energy should be minimized.

• On one hand, if the constraints system is well-constrained,
there is a finite set of solutions and the best one, or a good
enough one for the sake of computability, must be selected.
This discrete problem is combinatorial and can be hard to
solve (e.g., Travelling Salesman Problem).

• On the other hand, if the system is under-constrained, it admits
a continuum of feasible solutions and, under the usual mild as-
sumptions, a finite number of parameters values U which sat-
isfy both the constraints and some KKT (Karush–Kuhn–Tucker)
or FJ (Fritz-John) conditions for local optimality.

The key feature of current variational geometric modeling
approaches is that equations are available, and can be repre-
sented with tree-like data structures called DAGs (Directed Acyclic
Graphs) in numerical analysis, computational geometry and com-
puter algebra, or SLPs (Straight Line Programs) in dynamic geom-
etry. The main advantage of DAGs is to permit to automatically
compute the derivatives and Hessians. It is also possible to substi-
tute parameters at the leaves of a DAGwith other DAGs, to convert
a given DAG into the corresponding polynomial (a list of mono-
mials) or rational function. This is used to numerically evaluate a
given DAG with many arithmetics (floating-point, intervals, exact
arithmetics) for given numerical values of U . Like this it is possible
to studywhich nodes in a given DAG depend onwhich parameters,
and thus to update efficiently the value of a DAG when some pa-
rameters values in U are changed. To summarize this feature, we
say that these DAGs are white box DAGs, or white DAGs.

On the contrary, a DAG is called a black box DAG or a black
DAG, and a constraint is called a black box constraint or a
black constraint, when the corresponding equation, or system of
equations, is not available, or is not computable in practice. In this
case, it is only possible to evaluate the correspondingDAG for given
numerical values of parametersU , and to approximate the gradient
with finite differences. There is no guarantee that the underlying
function is continuous or smooth everywhere.

To illustrate differences between white and black DAGs,
imagine we need a point x inside a given shape s and closest to a
given point p. Then x is the solution of the constrained optimization
problem x = argminx∈s ∥x − p∥2, where, with classical Variational
Modeling, the condition x ∈ s must be expressed as a system of
mathematical equations. Clearly, if s is a car or a building, it is

just infeasible. Actually it is also infeasible for simple shapes, as
soon as they involve nested geometric operations (e.g., rounding,
blending, Boolean operations, optimizations). On the other hand,
computer graphics methods routinely solve this problem x =

argminx∈s ∥x− p∥2 using the routine closestPt(p, s) which does not
rely on systems of equations.

In this paper,we propose to use black boxDAGs instead ofwhite
box DAGs for Variational GeometricModeling of free form surfaces
and subdivision surfaces. We present a prototype, called DECO
(Deformation by Constraints), to show the feasibility and promises
of this approach. Our research is devoted to free form parametric
surfaces as well as to subdivision surfaces due to the gap which
currently exists between variational design and free form surface
modeling and because subdivision surfaces are largely used in
Computer Graphics and animation movies. Moreover subdivision
surfaces do not have implicit or parametric equations and are
generallymanipulated asmeshes approximating the limit surfaces.
In addition to the specificity of modeling these types of surfaces,
the interest of this novel approach is twofold. First, we no longer
have to translate, when it is possible, the geometric constraints
and the cost function into equations. Second, to express geometric
constraints F and cost function G, we can use existing geometric
procedures available in Computational Geometry, CAD/CAM and
mathematical or numerical software. Assuming interoperability,
functions or macros available in a geometric modeler software
could be called. Thus this approach permits to easily extend the
set of possible constraints. Certainly, with black DAGs, we can
no longer use tools of Computer Algebra (for symbolic and exact
computations of Jacobians, Hessians, resultants, Gröbner bases)
since no equation is available. But we think that the advantages of
our approach far outweigh its disadvantages. Additionally, it must
be noticed that we aim at obtaining easily a first draft respecting
given constraints in a preliminary stage of a design process and not
necessarily final objects. The receivedmodels can then be exported
to any CAD software for further developments.

The proposed approach is modular. It defines a formalism and
framework regardless of the resolution method. For example, we
use theGNU Scientific Librarywith the BFGSmethod. Furthermore,
our approach is generic in the sense that one can consider later to
treat other types of surfaces. Actually, we simply need to identify
variables and define black boxes to make calculations on these
surfaces.

The paper is organized as follows. Section 2 studies the related
works comparing white and black DAGs. Our new modeler,
allowing the specification of a set of constraints as well as an
objective function to be minimized is introduced in Section 3. The
associated solvers are presented in Section 4. Section 5 is devoted
to examples. Finally, Section 6 concludes this paper and exhibits
general issues raised by this approach.

2. Related work

Today’s industrial CAD modelers are built on top of the well-
known B-splines and NURBS paradigms to model free form
surfaces [6,2]. Since the expected shapes are generally complex,
the designer often has to decompose them into elementary shapes
themselves subdivided into several surfaces. Each elementary
surface is defined by means of a network of control points,
weights and knot sequences. Most of the time, these surfaces
must be trimmed to overcome the topological constraints of
the mathematical models. Finally, the elementary surfaces are
assembled together to produce a manifold solid, i.e., a B-Rep
representation expressing the relationships between the vertices,
the edges and the faces of the topological model. Nevertheless,
interacting at this low level is restricted to experts. Several
attempts have beenmade to try to overcome the limits inherent to
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