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a b s t r a c t

We propose a two-step approach for the construction of planar smooth collision-free navigation paths.
Obstacle avoidance techniques that rely on classical data structures are initially considered for the
identification of piecewise linear paths having no intersection with the obstacles of a given scenario.
Variations of the shortest piecewise linear path with angle-based criteria are proposed and discussed.
In the second part of the scheme we rely on spline interpolation algorithms with tension parameters to
provide a smooth planar control strategy. In particular, we consider the class of curves with Pythagorean
structures, because they provide an exact computation of fundamental geometric quantities. A selection
of test cases demonstrates the quality of the new motion planning scheme.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The design of motion planning strategies plays a fundamental
role inmodern computer applicationswith focus on different kinds
of simulation environments naturally related to robotics, as well as
to scientific visualization and interactive navigation [1,2]. The issue
of finding an optimal trajectory for a given path should properly
combine the geometric part of the motion, usually identified by a
path planning scheme, with a suitable time law.

The path planning problem includes the identification of paths
that do not intersect any obstacle. In order to avoid forbidden
configurations related to a given scenario, several graph-like
structures may be considered, see for example [3] for a recent
survey related to possible collision-free piecewise linear solutions.
Using a standard graph search algorithm, a graph with non-
negative edge weights can be exploited to compute the path
with lowest total cost between any two vertices of the graph. In
particular, the output of the algorithm may return an optimal
path with respect to a distance (shortest path) criterion. In order
to provide an optimal trade-off between the accuracy of the
prescribed trajectory and the flexibility of interactive navigations,
the information concerning the collision-free piecewise linear
path may be subsequently combined with spline interpolation
techniques that provide a smooth planar control strategy, see
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e.g., [4]. Previous attempts in this direction usually considered
solutions related to classical spline methods [5,6].

By considering interpolation schemes with tension control –
see, e.g., [7,8] and the references therein – as a control tool on the
shape of the interpolating curve, we present a two-step approach
for smooth path planning with obstacle avoidance. In the first
step, algorithms for the modification of the shortest piecewise
linear path associated to the trapezoidal map and the visibility
graph according to simple angle-based criteria are proposed and
discussed. In the second step, we consider the class of curves with
Pythagorean structures, because they usually provide paths with
fair shape and always guarantee exact computation of fundamental
geometric quantities like curvature and arc length [9]. This can also
facilitate the physical part of the motion which requires accurate
arc length and curvature computations [10].

The structure of the paper is as follows. Section 2 provides
the preliminary material that introduces the problem setting
and the two graph structures considered in the subsequent
algorithms, namely the trapezoidal map and the visibility graph.
The design of a piecewise linear collision-free path is addressed
in Section 3. Different algorithms that rely on the information
provided by the above mentioned data structures are presented
and discussed. Section 4 provides a brief overview of Pythagorean-
hodograph (PH) curves by focusing onG1 PHquintic Hermite spline
interpolants with tension parameters. An asymptotic analysis that
can be exploited for choosing the free parameters involved in the
interpolation scheme is developed in Section 5. A final illustrative
example in a non-trivial obstructed scenario is presented in
Section 6. Finally, Section 7 concludes the paper.
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2. Data structures

The aim of path planning is to define a suitable collision-free
path from an initial to a target position in a certain scenario that
includes a set of obstacles. In robotics, the position of every point
of the robot is usually defined as its configuration q and depends
on the specific robot model. The parameters needed to specify the
robot configuration identify the degrees of freedom associated to the
problem. All possible configurations define the configuration space
Q (C-space) that can be divided in two subsets: Qfree, the set of
robot configurations free from collision with obstacles, and Qobst ,
the obstacle configuration space given by the set of intersection
configurations between the robot and any obstacle. Hence, a
configuration q is just a point (or element) in the configuration
space and the number of the degrees of freedom corresponds to
the dimension of Q [1].

Given a two- or three-dimensional rigid body and a certain
scenario with a prescribed set of obstacles, we look for a smooth
vector function r(t) : [0, 1] → Q so that

r(0) = qs, r(1) = qg , and r(t) ∈ Qfree ∀t ∈ [0, 1],

where qs and qg correspond to the start and goal configuration,
respectively. The desired path is the image in Q of r(t).

The path planning problem can be considered in a wide set
of scenarios by taking into account different problem settings.
In particular, we consider the simplest planar point robot
problem where a circular robot of radius r is moving within a
certain scenario characterized by convex obstacles of polygonal
shapes. Consequently, the configuration space is just obtained by
augmenting the obstacle boundaries by their polygonal offset at
distance r . Then, after this preliminary offset computation, we can
consider the robot as a moving point within a two-dimensional
environment characterized by a known set of static obstacles with
a fixed position. In this context, the robot follows an a priori
identified path, constructed according to some off-line controller.

In order to identify a feasible path, certain navigability structures
that contain information about the free configuration space are
usually exploited. Several techniques to obtain different naviga-
bility structures are available. Among others, two approaches that
provide alternative solutions based on suitable data structures to
navigateQfree are the exact cell decomposition and roadmapmeth-
ods. In the family of graphs that may be taken into account within
thesemethods, see e.g., [1,11], we consider the trapezoidal map and
the visibility graph.

The trapezoidal map (or trapezoidal/vertical decomposition)
is a well-known example of exact cell decomposition. Given a
polygonal environment, the first step is to define a bounding box
that includes all obstacles. A trapezoidal map is conventionally
obtained by drawing two vertical extensions (one going upwards
and the other going downwards) from every vertex of the obstacles
to the first intersection with an obstacle edge or to the bounding
box. Once Qfree is partitioned, the adjacency graph is defined by
placing a node inside each trapezoid, e.g. its geometric centroid,
and additional ones in the middle of the vertical extensions. An
arc is then defined between two vertices of these two kinds of
nodes associated to the same trapezoid. In order to construct the
target path, qs and qg are added to the graph by simply connecting
them to the central vertices vs and vg of the two corresponding
trapezoids. Different graph search algorithms on the trapezoidal
map identify admissible collision-free paths between vs and vg . An
example of trapezoidal map is shown in Fig. 1(top).

The visibility graph is a widely known roadmap method in
computational geometry. Given a set of polygonal obstacles in
the plane, the nodes of the visibility graph correspond to the
vertices of each polygon. An arc between two vertices belongs
to the graph if the linear segment that connects these vertices

Fig. 1. A simple scenario (S1) together with the corresponding trapezoidal
decomposition (top) and visibility graph (bottom).

does not intersect any obstacle. To complete the roadmap, the
start and target positions are added to the set of graph nodes
together with the corresponding arcs. The naive algorithm to
compute the visibility graph has complexity O(n3), where n is the
number of nodes in the graph. By considering a suitable sweep
approach with balanced search tree structures the complexity can
be reduced to O(n2 log n) [11]. Fig. 1 (bottom) shows the visibility
graph associated to a simple scenario. Other examples of roadmap
methods include Voronoi diagrams and silhouette graphs.

3. Angle based algorithms for collision-free piecewise linear
paths

In order to define a smooth path that does not intersect any
obstacle, we consider two consecutive steps. In the first phase, we
rely on one of the two data structures introduced in the previous
section to define a suitable collision-free piecewise linear path.
Subsequently, the smooth path is obtained by interpolating the
vertices of the piecewise linear path previously computed, as
described in Section 4.

Classical graph search algorithms can be used either on the
trapezoidal map or the visibility graph to identify admissible paths
that do not intersect any obstacles in the first step of the method.
A standard choice relies on the Dijkstra’s algorithm that computes
the shortest path between two vertices of a given graph [12]. Note
that the shortest path associated to the visibility graph is the
absolute shortest path from the start to the goal position with
respect to the considered scenario, see e.g., [11].

In order to obtain a final path defined by a curve without
significant curvature peaks, the identification of suitable piecewise
linear paths with a small angle between two adjacent segments
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