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e A homogeneous star test method for implicit polynomial objects.
e Alinear programming optimization method to improve the efficiency of star test.
e Comparison of the naive star test and the homogeneous star test using different arithmetic.
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Star test

For a given point set, a particular point is called a star if it can see all the boundary points of the set. The star
test determines whether a candidate point is a star for a given set. It is a key component of some topology
computing algorithms such as Connected components via Interval Analysis (CIA), Homotopy type via
Interval Analysis (HIA), etc. Those algorithms decompose the input object using axis-aligned boxes, so
that each box is either not intersecting or intersecting with the object and in this later case its center
is a star point of the intersection. Graphs or simplicial complexes describing the topology of the objects
can be obtained by connecting these star points following different rules. The star test is performed for
simple primitive geometric objects, because complex objects can be constructed using Constructive Solid
Geometry (CSG), and the star property is preserved via union and intersection. In this paper, we improve
the method to perform the test for implicit objects. For a primitive set defined by an implicit polynomial
equation, the polynomial is made homogeneous with the introduction of an auxiliary variable, thus the
degree of the star condition is reduced. A linear programming optimization is introduced to further
improve the performance. Several examples are given to show the experimental results of our method.
© 2015 Elsevier Ltd. All rights reserved.

1. Introduction Decomposition (CADec), due to Collins and its variants [1-5] de-

compose a semi-algebraic set into cells and compute its topological

Computing the topology of geometric objects is a fundamental
problem in computer aided design (CAD), computer graphics (CG),
and robotics. It plays an important role in a lot of geometric com-
putations, such as recognition, feature extraction, simplification,
motion planning, etc. Also topological information of objects has a
significant impact on classification, indexation, shape description
in solid modeling and shape matching.

Several research efforts have been conducted to compute
the topology of geometric objects. The Cylindrical Algebraic
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properties. CADec is the first method for computing the topology
of a semi-algebraic set. This decomposition theoretically solves the
piano mover’s problem, i.e. the motion planning problem. Unfor-
tunately, CADec and its variants rely on Computer Algebra tools
with at least exponential cost. Thus roboticians typically prefer
probably-approximately-correct (PAC) methods, like the proba-
bilistic roadmap [6] to solve the motion planning problem. PAC
methods are fast but only approximate.

Computing the topology and arrangement of planar algebraic
curves has been subject to several studies [7-9], the output of the
proposed methods is a graph homotopic to the input algebraic
curve. However, these methods cannot process solid geometric
objects.

To preserve the topology in surface extraction, a star-shaped
criterion for geometric objects was presented in [10]. A star is a
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point which can see all the boundary points of a point set, and the
kernel of the set consists of all star points. The star test can be re-
duced to testing whether the kernel is empty or not, and the kernel
of polyhedral primitives can be computed using linear program-
ming. Therefore, the authors suggested to perform a dense tessel-
lation of the original primitive as a pre-processing step. Then an
approximate kernel is computed using linear programming. At last,
a point in the kernel is selected as the best candidate to perform
the star test. However, the method depends on the approximation
incurred in tessellation.

Recently, Delanoue et al. [11,12] proposed two exact algo-
rithms, Connected components via Interval Analysis (CIA) and
Homotopy type via Interval Analysis (HIA), resorting to interval
analysis. Contrarily to CADec, their methods CIA and HIA are prac-
ticable: they only use interval computations and the classical re-
cursive space subdivision [13]. Two other nice features of their
methods is that they consider each geometric primitive indepen-
dently, and they apply also to non polynomial functions (like cos,
sin, exp, log, etc.). Thus, CIA and HIA can compute topological prop-
erties for Constructive Solid Geometry (CSG) shapes easily. In coun-
terpart, for CIA and HIA, the sets, i.e. the free space for motion
planning, must be fat (see Appendix for the definition); in prac-
tice the free space is fat, but if by mistake it is not then the meth-
ods detect it. A more serious limitation of CIA and HIA (relatively
to CADec) is that they do not take into account objects defined by
projections, like extrusions or parametric patches: P : (u, v, w) €
[0,1]® = (x,¥,2) = P(u, v, w) € R? often met in CAD [14].

CIA and HIA are important for CAD because they compute and
certify topologic properties of input geometric sets and objects. The
need for certification (of geometric, or topological, properties of
geometric programs) is currently increasing, e.g. Narkawicz et al. in
NASA recently certified the correctness of a geometric software for
the detection and avoidance of collisions between airplanes [15].
In the future, all critical geometric objects and algorithms should
be certified with some proof assistant, like Coq or PVS.

We now mention three other potential applications of the star
test in CAD. First, variational modeling: the idea is to specify
mechanical parts or clearances with geometric constraints (inci-
dences, tangencies, distances, angles), which a solver numerically
solves. Unfortunately, topologic constraints like connectedness are
not expressible into mathematical equations or inequalities. The
solution is to resort to the generate-and-test paradigm of Artificial
Intelligence: the solver generates all solutions, connected or not,
and then CIA discards non-connected clearances.

Second, CIA and HIA can also apply to the space of feasible con-
figurations or free motions of some given mechanisms, for example
composed of articulated bars: is it possible for this flexible mecha-
nism to move continuously from one feasible configuration to an-
other? More generally, HIA can compute homotopy independent
cycles, or homotopy independent paths between two given posi-
tions in a configuration space.

Third and last, CIA and HIA may help to study the consistence
of toleranced Breps. In a nuttshell, each cell (vertex, curve,
surface patch) of a toleranced BRep [16] is attached a tolerance,
or thickness. Tolerances were introduced to robustly compute
Boolean operations between solids: tolerances fill cracks and can
solve inaccuracy issues. Shapiro [ 16] suggested that Leray’s nerve
theorem may provide a set of local conditions (like contractibility
or collapsibility, some of them computable with the star test),
which are necessary or sufficient to guarantee that a given
toleranced BRep is consistent, for instance that it indeed separates
an inside from an outside.

In this paper, we improve the method to perform the star test
for geometric objects defined by implicit polynomial equations.
We propose several computable and sufficient conditions to prove
that a set is empty, to prove that a set is non empty, to prove that

a point is a star, to prove that it is not. For implicit polynomial
objects, we reduce the degree of the star condition, and compare
the proposed method with the method in [11,12]. Furthermore, we
implement the test using interval arithmetic [ 17,18] and Bernstein
based methods, we then compare their performances.

The rest of the paper is organized as follows: in Section 2, we
recall some basic concepts and properties of interval solvers and
Bernstein based methods. Then our methods of the star test for
implicit objects are introduced in Sections 3 and 4. Experimental
results are shown and discussed in Section 5. We conclude the
paper in Section 6.

2. Preliminaries
2.1. Star-shaped and the HIA algorithm

Here we recall some fundamental concepts and proposi-
tions [11,12].

Definition 1. A point sis a star for a subset X of an Euclidean space
if X contains all the line segments connecting any of its points
and s.

Given a geometric set S, the test whether a candidate point s is
a star point of S is usually called star test.

Definition 2. If s is a star for subset X of an Euclidean space, one
says that X is star-shaped or s-star-shaped.

Proposition 1. Let X and Y be two s-star-shaped sets, then X N'Y
and X U'Y are also s-star-shaped.

For the proof, we refer readers to the reference [11]. After
Proposition 1, the star property is preserved via union and intersec-
tion. Thus, it is sufficient for HIA and CIA to consider independently
each geometric primitive in the CSG tree. It is a big advantage of
these methods that they do not need to compute intersections be-
tween geometric primitives, i.e. they avoid the (difficult) boundary
evaluation problem [19-21].

Star test is a key component of some topology computing algo-
rithms such as CIA, HIA, etc. To show the application of the star test,
we recall the definition of the HIA algorithm briefly. Let I be a finite
set of integers, Ui, S; = S is called a finite cover of S, S; are interior
disjoint sets. The HIA algorithm computes a finite cover S;,i € [
of the studied set S such that VJ C I, Mg §; is either empty or
contractible. It is contractible if it contains a star. The algorithm
starts with a given initial box B, S; = B; N S, where B; will be sub-
boxes of B. If a box B such that BN S # @ is not a member of such
finite cover, it is subdivided at the center, with a random perturba-
tion, and along the longest edge. The procedure is recursively per-
formed until a cover satisfying the previous condition is found. Let
S be ad dimensional object, then the studied boxes have dimension
d,d—1,...,0.It may happen that one of the subdivided boxes is
smaller than some given threshold ¢ and the expected cover is still
not reached, then the whole procedure has to be re-run. Usually it
is the case when some subdividing (hyper)plane is tangent or al-
most tangent to the given object. It is claimed that the cover can
be found for most fat objects with probability 1[11,12]. The CIA al-
gorithm is quite similar to the HIA algorithm, more details can be
found in [11,12].

Fig. 1 illustrates the rule to connect star points of the HIA
algorithm in a box: let § be the object, and B be the studied box.
Point E is a star for § N B. Point A is a star for the intersection of §
and the upper edge of B. Point Bis a star for the intersection of § and
the left edge of B. Point D is a star for the intersection of § and the
bottom edge of B. The intersection of S and the right edge is empty.
Finally, A (and C) are trivial stars for ANS (and CNS). The simplicial
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